In this study an optoelectronic design is reported and characterized. The device is made of p-type MgO solved in sodium silicate binder and n-type GaSe0.5S0.5 heterojunction. It is described by means of X-ray diffraction, optical absorption and reflection in the incident light wavelength range of 190-1100 nm and by means of dark and 406 nm laser excited current (I)-voltage (V) characteristics. The optical reflectance was also measured as a function of angle of incidence of light in the range of 35-80. The structural analysis revealed no change in the existing phases of the device composers. In addition, it was observed that for pure sodium silicate and for a 67% content of MgO solved in sodium silicate binder (33%), the heterojunction exhibits a valence band shift of 0.40 and 0.70 eV, respectively. The painting of MgO improved the light absorbability significantly. On the other hand, the angle-dependent reflectance measurements on the crystal displayed a Brewster condition at 70. The MgO/ GaSe0.5S0.5 heterojunction exhibited no Brewster condition when irradiated from the MgO side. Moreover, for the crystal and the MgO/ GaSe0.5S0.5 heterojunction, the dielectric spectral analysis revealed a pronounced increase in the quality factor of the device. The I-V characteristics of the device revealed typical optoelectronic properties with high photo-response that could amplify the dark current 24 times when irradiated with 5 mW power laser light. The structural, optical, dielectric and electrical features of the MgO/GaSe0.5S0.5 heterojunction nominate it for use in visible light communication technology. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords
Authors
Qasrawi
A. F.
AlGarni
S. E.
Gasanly
N. M.
Pages From
377
Pages To
383
Journal Name
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING
Volume
39
Issue
1
Keywords
Optical materials; Heterojunction; Optical spectroscopy; Dielectric properties
Abstract