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Abstract

In this paper, a periodic One-Component Plasma (OCP) system of N-point particles is simulated by Monte Carlo
(MC) technique in three dimensions. Because of the long range nature of the Coulomb potential, no cut-off distance
is considered in calculations (i.e, for each particle i, the effect of the other N-1 particles on i, is taken into account).
The maximum allowed displacement "dmax" used in MC simulation controls the convergence to the equilibrium
state of the system. An optimum maximum allowed displacement, O-dmax, is found and is given by a function of the
temperature and the density of the system. Obtaining this function is done statistically by fitting the calculated data
resulted from simulating the system at different values of temperature and density. The obtained O-dmax gives fast
convergence of the simulation.
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Introduction

The OCP is a system of N-identical charged particles interacting through Coulomb potential and
embedded in a uniform compensating background of opposite charge. The OCP in one, two, and
three dimensions explores the features and properties of many phenomena in the fields of
electrodynamics, statistical mechanics, and thermo-dynamics. Hence, it has been under focus by
many researchers in the last six decades (Levesque D. W. J., 1983), (Deutsch C., 1974), (B. J. ,
1981), (Alstuey A, Surface properties of the three-dimensional one-component plasma, 1981),
(L., 2004), (Zambrodin A., 2006). The bulk and surface properties of the three dimensional OCP
were studied using MC simulation (Levesque D. W. J., 1983). The structure of strongly coupled
uniform OCP in two and three dimensions is calculated by the "Onsager Molecule™ approach
(Rosenfield Y., 1989). Simple analytical approximations for the internal energy of the strongly
coupled OCP in two and three dimensions are studied in (Kharpak Sergy A., 2014). The fermion
MC variational calculations were performed to determine the equation of state of the uniform
OCP in two and three dimensions (D, 1972). The magnetic properties of the OCP in two and
three dimensions were studied in (Alstuey A, Magnetic properties of a nearly classical one
component plasma in three or two dimensions, 1980).The general variational formulation for the
application of Mean Spherical Approximation for soft potentials, and the results of the OCP were
discussed and extended in (Y., 1984). The equilibrium properties of the classical OCP in a
uniform background of opposite charge were computed for systems of various sizes using MC
method (J., 1973). At one special temperature, the equilibrium statistical mechanics of the
classical two dimensional OCP were worked out exactly in (B. J., 1984). MC computations of
the surface energy of the classical OCP have been made for different values of the plasma
parameter Gamma (Badiali J. P., 1983). The MC simulation was used to study the lattice
dynamics in the harmonic approximation and the solution of the hyper-netted-chain equation in
the classical two dimensional OCP (Gann R. C.Chakravarty, 1979). Results from MC study of
the classical two dimensional OCP were obtained in (Brushl V. M., 1966), (Caillol J. M., 1982).
The fluctuations in the net electric charge in a two dimensional OCP with uniform background
charge density were studied using computational simulations (Levesque D. W. J., 2014). The two
dimensional OCP Yukawa systems in a perpendicular magnetic field was studied using
computational technique to explore the equilibrium particle dynamics in the fluid state (Ott T.,
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2014). Many other references can be found in the literature that study different systems of OCP.
In this research, the OCP in three dimensions is studied using Metropolis MC, (MMC) method.
The aim of the research is to obtain an explicit formula that gives the O-dnax as a function of
temperature and density. The same methodology has been used for Lennard Jones (Al-Shraydeh,
2015). Obtaining such a displacement and using it in simulation will decrease the computational
work needed to reach the equilibrium state of the system. In the next section, we will present the
MMC simulation method. The effect of the choice of dnax on calculations will be discussed in
section 3. Numerical results will be presented in section 4, and a fitting of the data will be done in
order to obtain the O-dmax for any choice of temperature and density. Discussion, conclusions,

and future perspectives will be made in the last section.

Monte Carlo Simulation

Monte Carlo (MC) is considered to be the most important simulation techniques that are usually
used for solving problems in statistical physics. In MC method, the basic idea is to evaluate
thermal averages of materials by statistically sampling a desired region of the phase space of a
model using computers (Newman M. E. J., 1999). The quick development of computational
resources, and the expansion of new algorithms allow MC simulations to be a base for studying
lots of subjects of statistical physics (M., 1992). The results obtained in this work are based on
MC simulations. Hence, a brief look at the general idea behind equilibrium thermal MC
techniques is done in this section. In any N-particle system with constant volume V, constant
temperature T, and constant number of particles N (NVT ensemble), the average value <A> of

any observable A of the system can be approximated by (Landua D. P., 2000).

A=l AW, @)

Where M is the number of the sampled points from the distribution P(t), and t; denotes the

configuration i of the system. The distribution P(t) is

o—BU®)
P = 7w @)
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where f = 1/(KBT ), KB is the Boltzmann constant and U is the potential total. Practically, it is
possible to construct a Markov chain of configurations t; t,. t, that approaches the desired
distribution P (t). This construction can be done using a technique developed by Metropolis and
co-workers in 1953 and the Metropolis Monte Carlo (MMC) (Metropolis N., 2008). This
technique depends on the fact that the probability of transferring the system from state t; to state t;
is (David M. Ferguson, 1999), (AR, 2004)

Pr(ti > tj) = min {1,e A4}, (3)

Where AU = U(t)-U(t).
Metropolis et.al., suggested the following steps in order to determine whether the change of the
state of the periodic N-particle system will be accepted or rejected.
1. Choosing randomly the initial state, t;, of the system.
2. Enumerating the particles from 1 to N. Let k =1.
3. While k <N, doing steps 5-12.
4. Calculating the total potential energy U;.
5. Generating a new state, tj, by changing the position of particle k.
6. Calculating the new total potential energy U;.
7. Computing the difference in the energy AU = U;-U;.
9. Calculating the transition probability P, according to equation (3).
10. Generating a uniform distribution random number, & , in the interval [0; 1].
11. If Pr (ti — t)) is greater than & , accept the move, let j =iand k = k + 1, otherwise, reject the
move and let k = k + 1. Go to step 5.
12. Repeating steps (3- 12) N times, where N denotes the number of MC sweeps.

Increasing the number of MC sweeps, Ns will increase the accuracy of calculating the desired
properties of the system. Each move of any particle at each MC sweep must obey the periodicity
of the system; the reason is that the physical system under consideration is infinite. Number of
particles in the center box is N (Figure 1). All other boxes are copies of the central one. When a
particle moves outside this box, an alternative particle enters it from the opposite side. Moving
the particles, the researcher must do the simulation according to a criterion that does not allow the

particle's displacement to exceed a limited value. This criterion is discussed in the next section.
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Figure 1: The periodicity of the N-particle system.

Maximum Allowed Displacement

The random movements in step 5 of the MMC algorithm determines the acceleration of
convergence to the equilibrium state of the system. The random displacement of any particle is
given by

8= dpar-(1-2.8) @)

where dmax is the maximum allowed displacement of the particle along the coordinate axes, T:(l,

1, 1), and 5 is a vector whose components are random numbers distributeduniformly on the
interval [0, 1]. The acceptance rate (the ratio between the numbers of the accepted moves to all
number of moves (N*Ns)) depends on dmax. If 72 is the position of the particle before movement,
then, the new position, taking into account the periodicity, is given by

?{new: ?iold + 5-’ (5)

If the particle's movements are too small, neighboring configurations will be highly correlated
and any essential change of the configuration will need many particle displacements. If dyax IS t00
large, most moves will be rejected, which will also lead to the increase of the computational
work. In our research we will determine the best dmax at any given temperature and density. The
criteria that will be used are the speed of convergence to the equilibrium state. In many systems
other than OCP, it was found that the dnax corresponds to acceptance rate of 50%, which is

common, although there is no motivation that this value is optimal.
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Numerical Results

A periodic OCP system of fixed N particles, fixed temperature T, and fixed volume V is
simulated in three dimensions using MMC technique (NVT-MC). The number of particles used
in calculations is 125 particles, which is traditionally sufficient to get the desired results. The
number of MC sweeps used is Ns=10000 which is statistically enough. Because of the long range
nature of the system, a large dimensionless scale cube box of five length edge is used, and no cut-
off distance is considered in calculations.

The potential function of the OCP system is the Coulomb one, which is given by

flry) = —— (6)

ATEy Tij

Where rjj is the distance between the two particles i and j, (in our system, ¢; = g; for alli and j),
the constant €, is the electrical permittivity of space. The reduced form of the Coulomb potential

which is considered in our calculations is

. 1
f(ry) = — @)
Where
. 4
= —qf:j f 8)

The temperature T is also given in reduced form

T* = TKj, ©)
While the density is

. N
pr= (10)

The NVT-MC code was written in C** language using C* builder 6 and tested on Windows
2007, 32 bit. Once the simulation runs stable measurements of respective energy is performed.
The output data files were saved in Microsoft Excel format and the output figures were saved as
output Matlab figures. The reason for installing C** builder 6 instead of the other builders is that,
it could be linked directly with Matlab 2008, and Microsoft Office Excels 2010. In NVT-MC
code, the right balance between readability, taking advantage of C** features, and performance

have been considered in this work. The Coulomb potential energy behavior of the point particles,
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which simulated in 3D lattice, is studied to obtain the O-dnax that leads to get fast equilibration
optimally with minimum number of MC sweeps. During the simulation, the calculations of the
Coulomb potential followed the expected physical behavior, and the periodic boundary
conditions worked correctly. The simulation was done using different values of temperature T
and density in the ranges [0.5, 3], and [0.25, 2] respectively. The convergence of the Coulomb
potential as a function of MC sweeps is tested. The values of dnax associated with faster

convergence, O-dmax, are listed in tables 1, 2, 3, 4,5, and 6.

Table 1: The values of O-d, at T *=1.0

P* O'dmax
0.2500 0.039117567
0.3125 0.032716157
0.3750 0.028504404
0.4375 0.025380106
0.5000 0.023230942
0.6250 0.020190683
0.7500 0.017987165
1.0000 0.015327276
1.2500 0.013626067
1.5000 0.012557762
1.7500 0.010328764
2.0000 0.009598112

Table 2: The values of O-0. at T* =1.0

P* O'dmax
0.2500 0.211217788
0.3125 0. 173166707
0.3750 0. 146356671
0.4375 0. 128675012
0.5000 0. 114926428
0.6250 0. 096981353
0.7500 0. 085340521
1.0000 0. 069153823
1.2500 0. 057870671
1.5000 0. 048931762
1.7500 0. 042939171
2.0000 0. 038454244
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Table 3: The values of O-0.x at T* =1.5

P* O'dmax
0.2500 0. 928200925
0.3125 0. 724771376
0.3750 0. 587099005
0.4375 0. 496245599
0.5000 0. 415476390
0.6250 0. 313707649
0.7500 0. 252662978
1.0000 0. 209657745
1.2500 0.164118476
1.5000 0. 136255572
1.7500 0. 116671792
2.0000 0. 102599723

Table 4: The values of O-d at T* =2.0

p O-Umax
0.2500 2.453771943
0.3125 1.897912977
0.3750 1.551728904
0.4375 1.290991592
0.5000 1.237715042
0.6250 0.878966628
0.7500 0.712006513
1.0000 0.515461608
1.2500 0.387777545
1.5000 0.317012074
1.7500 0.256496178
2.0000 0.219619119

Table 5: The values of O-0.x at T* =2.5

p O-Umax
0.2500 1.934964176
0.3125 1.797793148
0.3750 1.686102781
0.4375 1.632385194
0.5000 1.574118315
0.6250 1.506529980
0.7500 1.461528562
1.0000 1.282053425
1.2500 1. 200022068
1.5000 1.121495183
1.7500 1.077586427
2.0000 0.500460792
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Table 6: The values of O-0.x at T* =3.0

p* O'dmax
0.2500 2.327120570
0.3125 2.150301425
0.3750 2.021993410
0.4375 1.899782981
0.5000 1.823846144
0.6250 1.728136450
0.7500 1.607847958
1.0000 1.486817400
1.2500 1.424641803
1.5000 1.333967768
1.7500 1.079311682
2.0000 0.924562430

Figure 2 shows an example of the Coulomb potential versus MC sweeps at different values of
dmax at specific temperature and density and the acceptance rate associated with the O-dmax Which
is about 50%. This fact is true for all values of T; Figure 3 shows the fitted curve of the O-dnax as
a function of density for specific temperature; it decreases by increasing the density; figure 4
shows that the behavior of O-dmax as a function of density at different values of temperature;
Figure 5 shows the best fitting curve of the O-dnax as a function of temperature at specific
density; Figure 6 shows the simulating results of O-dnmax as a function of temperature at different
values of density. Clearly, the O-dyax increases by increasing the temperature of large densities.
For small densities, results show the same conclusion for temperature less than two; Figure 7 is a
3-dimensional fitted curve that gives the O-dnax as a function of temperature and density. The data
is taken from Tables 1, 2, 3, 4, 5, and 6. Fitting the data is done by Matlab and gives the

following explicit mathematical formula:

F (T p*) = 0.5733 - 0.6203*T*- 1.57*p* + 1.226*T*%- 1.211*T**p* + 2.051*p*? — 0.2482 T*3 + 0.2031*T***p*+
0.08202*T**p*? — 0.5642*p*3, (11)

where F(T™, p*) represents the O-dmax at any T and . The correlation coefficient for Formula

11 is 0.95.
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Figure 2: The Coulomb potential versus MC sweeps at T* =0.5.
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Figure 3: The O-dpax Versus p* atT* = 0.5
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Figure 4: The O-dna Versus p*at different values of T*.
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Figure 5: The O-dpax versus T*at p*=2.
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Figure 6: The O-dpyax versus T* at different values of p*.
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Figure 7: The best fitted surface that represents the O-0nax
as a function of temperature and density.
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Conclusions and Future Work

The OCP is considered as one of the most important systems that occur in many phenomena in
science. The metropolis MC simulation method has been used very often in the last six decades
in order to understand the properties of those systems. The speed of convergence of the
simulation to the equilibrium state of the system is affected by many parameters like number of
particles, density, temperature, and maximum allowed displacement dma. In this research, an
optimum dmax is obtained as a function of temperature and density for fixed number of particles.
The formula obtained is given by 11 with correlation coefficient 0.95. In any OCP systems, an
MC simulation can be done efficiently by using the O-dyax Obtained in this research. As a future
work, we are planning to add kinetic energy calculations and take in our consideration the radius
of atom to apply the simulation at real systems. Moreover, we will incorporate the dipole-dipole
interactions in the OCP system, and the optimum maximum allowed displacement of the angle
and check out the relation between the best angle and the best displacement. The two Component

Plasma will also be under focus in a future work.
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