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Abstract 

Resorting to the Dichotomous decision model, where individuals can make alternative decisions, we study two 

geometric approaches to construct all possible decisions tiling. Each decision tiling indicates the way the Nash 

equilibria co-exist and change with the relative decision preferences of the individuals. We find the Nash domains for 

the pure and mixed strategies and characterize the space of all parameters where the pure Nash equilibria are either 

cohesive or disparate. We show how the coordinates of the influence matrix together with the total number of 

individuals affect significantly the occurrence of bifurcations with and without overlaps between the pure strategies. 
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Introduction 

    The Dichotomous decision model is a recent game theoretical model introduced by Mousa et al. 

in 2014 (Mousa et al., 2014a). In this model, there are just two possible decisions that individuals 

can make. For instance, they have to choose between yes or no, i.e. d ∈ D = {Yes, No}. The 

individuals will have to make decisions according to their preferences. The preferences have the 

interesting feature of taking into account not only how much the individuals like or dislike a certain 

decision but also the other individuals’ decisions. This decision model has wide applications in real 

life and can be used to understand better the social interaction (Mousa et al., 2011a; Mousa et al., 

2015a), tourism industry (Brida et al., 2010; Brida et al., 2011) and economical and political 

revolutions (Almeida et al., 2011a; Almeida et al., 2011b; Mousa et al., 2011b; Mousa et al., 

2014b).  

    The Dichotomous decision model is a modified version of the game theoretical model introduced 

by Pinto et al. (Almeida et al., 2011a) who developed a psychological game model for reasoned 

action theories inspired by the works of J. Cownley and M. Wooders (Conley and Wooders, 2001). 

They studied the way saturation, boredom and frustration can lead to desperate strategies (if the 

individuals of same group will make different decisions), and no saturation situations can lead to 

cohesive strategies (if all the individuals belonging to a same group will make the same decision). 

Ajzen (Ajzen, 2002) and Baker et al. (Baker et al., 2008) predict the way individuals turn intentions 

into behaviors and this prediction is the main goal in Planned Behavior or Reasoned Action 

theories. 

    Mousa et al. (Mousa et al., 2015a) show that groups are formed by individuals with the same 

utility, and a group is cohesive if every individual has a gain in his utility when other individuals 

of the same group make the same decision as his. Furthermore, they show that individuals in a 

same group can make different decisions at certain Nash equilibria. In a dynamical version of the 

decision model (Mousa et al., 2014a), the authors exhibit solutions that are periodic attracting 

cycles and so the individuals can keep changing the probabilities that they use to make a decision 

or another around some thresholds. These thresholds show the appearance of hysteretic-like 

behavior in the decision models. As in dynamics (Mousa, 2013), small changes in the parameters 

might imply the appearance and disappearance of the pure Nash equilibria. 
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    The Dichotomous decision model has been extended to a general model (Mousa, 2013), and 

other future extension formulation for the decision model would be to include some kind of 

stochastic pattern in the model parameters. Recent research articles, that handle a stochastic 

decision problem for individuals, is introduced by Mousa et al. (Mousa et al., 2015b; Mousa et al., 

2016). 

    In this paper, we study two geometric approaches to construct all possible Nash eqilibria for the 

decisions tiling. We characterize the space of all parameters for the Dichotomous decision model, 

where the pure and mixed strategies are Nash equilibria, and we find the corresponding Nash 

domains. We will see how the coordinates of the influence matrix together with the total number 

of individuals encode all the relevant information for the existence of Nash equilibria strategies. 

The existence of these equilibria is also related to size effect of the relative decision preferences 

for the individuals. The two approaches rise in making 289 different combinatorial classes of 

decision tiling by capturing the information that rises from the crowding type of individuals, 

reflecting the complexity of the yes-no decision model (Mousa et al., 2011a). 

    This paper is organized as follows: In Section 2 we review the Dichotomous decision model and 

some main results introduced in (Mousa et al., 2014a), in Section 3, we study two different strategic 

approaches to construct geometrically all possible tilings and determine the Nash domains for the 

pure and mixed strategies and we conclude in Section 5 

The Dichotomous decision model 

    In this section, we review the Dichotomous decision model introduced in (Mousa et al., 2014a) 

with some main results. In section 2.1 we introduce the decision model. In section 2.2 we study the 

pure Nash equilibria and in section 2.3 we study the mixed Nash equilibria. 

2.1. Model set up. The model has two types 𝑻 = {𝑡1, 𝑡2} of individuals. Let 𝐼1 = {1, ⋯ , 𝑛1} be 

the set of all individuals with type 𝑡1, and let 𝐼2 = {1, ⋯ , 𝑛2} be the set of all individuals with 

 𝑑 ∈has to make one decision 𝑖 ∈ 𝑰 be the disjoint union. The individual 𝑰 = 𝐼1 ∐ 𝐼2 Let.  𝑡2type

 .1𝑫 = {𝑌, 𝑁} 

                                                           
1 Similarly, we can consider that there is a single individual with type 𝑡𝑝 that has to make 𝑛𝑝  decisions, or we can 

also consider a mixed model using these two possibilities. 
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    Let L be the preference decision matrix whose coordinates 𝑤𝑝
𝑑 indicate how much an individual 

with type 𝑡𝑝 likes or dislikes, making decision 𝑑 ∈ 𝑫 

𝐿 = (
𝑤1

𝑌 𝑤1
𝑁

𝑤2
𝑌 𝑤2

𝑁) . 

The coordinates of the preference decision matrix indicate for each type of individuals the decision 

that the individuals prefer, i.e. the taste type of the individuals (Mousa et al., 2011a; Mousa et al., 

2014a; Mousa et al., 2015a). Let 𝑁𝑑 be the preference neighbors matrix whose coordinates 

𝛼𝑝𝑞
𝑑  indicate how much an individual with type 𝑡𝑝 who decides d likes or dislikes that an individual 

with type 𝑡𝑞 also makes decision 𝑑 

𝑁𝑑 = (
𝛼11

𝑑 𝛼12
𝑑

𝛼21
𝑑 𝛼22

𝑑 ) . 

The coordinates of the preference neighbors matrix indicate, for each type of individuals whose 

decision is d, whom they prefer, or do not prefer, to be with in each decision, i.e. the crowding type 

of the individuals (Brida et al., 2010; Conley and Wooders, 2001; Mousa et al., 2014a).   

Definition 2.1 (Mousa et al., 2014a). The (pure) decision of the individuals is a (pure) strategy 

map 𝑆: 𝑰 → 𝑫 that associates to each individual 𝑖 ∈ 𝑰 its decision 𝑆(𝑖) ∈ 𝑫. 

    Let 𝑺 be the space of all strategies 𝑆. For a given a strategy 𝑆 ∈ 𝑺, let 𝑂𝑆 be the strategic decision 

matrix whose coordinates 𝐿𝑝
𝑑 = 𝐿𝑝

𝑑 (S) indicate the number of individuals with type 𝑡𝑝, who make 

decision 𝑑  

𝑂𝑠 = (
𝐿1

𝑌 𝐿1
𝑁

𝐿2
𝑌 𝐿2

𝑁) . 

Definition 2.2 (Mousa et al., 2014a). Let 𝑆 ∈ 𝑺. The strategic decision vector associated to a 

strategy 𝑆 is the vector  

(𝑙1, 𝑙2) = (𝑙1
𝑌(𝑆), 𝑙2

𝑌(𝑆)) , 

 where 𝑙1 (𝑟𝑒𝑠𝑝.  𝑛1 − 𝑙1) is the number of individuals with type 𝑡1 who make the decision 

𝑌 (𝑟𝑒𝑠𝑝. 𝑁), and 𝑙2 (𝑟𝑒𝑠𝑝.  𝑛2 − 𝑙2) is the number of individuals with type 𝑡2 who make the 
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decision 𝑌 (𝑟𝑒𝑠𝑝. 𝑁). Furthermore, the set 𝑶 of all possible strategic decision vectors is defined 

by 

 𝑶 = {0, ⋯ , 𝑛1}  ×  {0, ⋯ , 𝑛2} . 

    The utility function 𝑈1: 𝑫 × 𝑶 → ℝ  of an individual with type 𝑡1 is defined by 

 𝑈1(𝑌; 𝑙1, 𝑙2) = 𝜔1
𝑌 + 𝛼11

𝑌 (𝑙1 − 1) + 𝛼12
𝑌 𝑙2 ; 

                    𝑈1(𝑁; 𝑙1, 𝑙2) = 𝜔1
𝑁 + 𝛼11

𝑁 (𝑛1 − 𝑙1 − 1) + 𝛼12
𝑁 (𝑛2 − 𝑙2) 

and the utility function  𝑈2: 𝑫 × 𝑶 → ℝ of an individual with type 𝑡2 is defined by 

 𝑈2(𝑌; 𝑙1, 𝑙2) = 𝜔2
𝑌 + 𝛼22

𝑌 (𝑙2 − 1) + 𝛼21
𝑌 𝑙1 ; 

                     𝑈2(𝑁; 𝑙1, 𝑙2) = 𝜔2
𝑁 + 𝛼22

𝑁 (𝑛2 − 𝑙2 − 1) + 𝛼21
𝑁 (𝑛1 − 𝑙1) . 

Given a strategy 𝑆 ∈ 𝑺, the utility 𝑈𝑖(𝑆) of an individual 𝑖 with type 𝑡𝑝(i)  is given 

by  𝑈𝑝(𝑖)(S(i); 𝑙1
𝑌(𝑆), 𝑙2

𝑌(𝑆)). 

 

Definition 2.3 (Mousa et al., 2014a). The horizontal relative decision preference of the individuals 

with type 𝑡1 is defined by 

x = ω1
𝑌 − ω1

𝑁 

and the vertical relative decision preference of the individuals with type 𝑡2 is defined by 

y = ω2
𝑌 − ω2

𝑁 . 

    

 If 𝑥 >  0, the individuals with type 𝑡1  prefer to decide 𝑌 , without taking into account the 

influence of the others. If 𝑥 =  0, the individuals with type 𝑡1 are indifferent to decide 𝑌 or 𝑁, 

without taking into account the influence of the others. If 𝑥 <  0, the individuals with type 𝑡1 prefer 

to decide 𝑁, without taking into account the influence of the others. 

 

Definition 2.4 (Mousa et al., 2014a). For 𝑖, 𝑗 ∈  {1, 2}, we define the coordinates of the influence 

matrix 𝐴 by 

𝐴𝑖𝑗 = 𝛼𝑖𝑗
𝑌 + 𝛼𝑖𝑗

𝑁 . 
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    If  𝐴𝑖𝑗 >  0, the individuals with type 𝑡𝑗 have a positive influence over the utility of the 

individuals with type 𝑡𝑖 . If  𝐴𝑖𝑗 =  0, the individuals with type 𝑡𝑗 are indifferent for the utility of 

the individuals with type 𝑡𝑖 . If  𝐴𝑖𝑗 < 0, the individuals with type𝑡𝑗 have a negative influence over 

the utility of the individuals with type 𝑡𝑖. 

 

Definition 2.5 (Mousa et al., 2014a). A strategy 𝑆∗: 𝑰 →  𝑫 is a Nash equilibrium if, for every 

individual 𝑖 ∈  𝑰 and for every strategy 𝑆, with the property that 𝑆∗ (𝑗)  =  𝑆(𝑗) for every 

individual 𝑗 ∈  𝐼 \ {𝑖}, we have 𝑈𝑖(𝑆∗) ≥ 𝑈𝑖  (𝑆). Furthermore, the Nash equilibrium domain 𝐸(𝑆) 

of a strategy 𝑆 is the set of all pairs (𝑥, 𝑦) for which 𝑆 is a Nash Equilibrium. 

 

2.2. Pure Nash equilibria. The pure strategies are either cohesive strategies or disparate strategies. 

 

Definition 2.6 (Mousa et al., 2014a).  A cohesive strategy is a pure strategy in which all individuals 

with the same type prefer to make the same decision. A disparate strategy is a pure strategy that is 

not cohesive, i.e. a pure strategy in which there are some individuals with the same type who prefer 

to make different decisions. 

 

Lemma 2.7 (Mousa et al., 2014a). The Nash domain 𝑵(𝑌, 𝑌) of the cohesive strategy (𝑌, 𝑌) is 

given by 

𝑵(𝑌, 𝑌) = {(𝑥, 𝑦): 𝑥 ≥ 𝐻(𝑌, 𝑌)  𝑎𝑛𝑑 𝑦 ≥ 𝑉(𝑌, 𝑌)} , 

 where the horizontal 𝐻(𝑌, 𝑌) and vertical 𝑉(𝑌, 𝑌) strategic thresholds of the (𝑌, 𝑌) strategy are 

given by 

𝐻(𝑌, 𝑌) =  − 𝛼11
𝑌 (𝑛1 − 1) − 𝛼12

𝑌  𝑛2  and      𝑉(𝑌, 𝑌) =  − 𝛼22
𝑌 (𝑛2 − 1) − 𝛼21

𝑌  𝑛1. 

Hence, the cohesive strategy (𝑌, 𝑌) is a Nash equilibrium if, and only if, (𝑥, 𝑦)  ∈  𝑵(𝑌, 𝑌). 

Moreover, the Nash domain 𝑵(𝑌, 𝑌) is the right-upper quadrant in the xy-plane (see Figure 1).  
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Figure 1. Cohesive Nash equilibria domain  𝑵(𝒀, 𝒀), (Mousa et al., 2014a). 

Lemma 2.8 (Mousa et al., 2014a). The Nash domain 𝑁(𝑌, 𝑁) of the cohesive strategy (𝑌, 𝑁) is 

given by 

𝑵(𝑌, 𝑁) = {(𝑥, 𝑦): 𝑥 ≥ 𝐻(𝑌, 𝑁)  𝑎𝑛𝑑  𝑦 ≤ 𝑉 (𝑌, 𝑁)} , 

 where the horizontal 𝐻(𝑌, 𝑁) and vertical 𝑉(𝑌, 𝑁) strategic thresholds of the (𝑌, 𝑁) strategy are 

given by 

𝐻(𝑌, 𝑁) =  − 𝛼11
𝑌 (𝑛1 − 1) +  𝛼12

𝑁 𝑛2        and      𝑉(𝑌, 𝑁)  = 𝛼22
𝑁 (𝑛2 − 1) − 𝛼21

𝑌 𝑛1 . 

 

 

Figure 2: Cohesive Nash equilibria domain 𝑵(𝒀, 𝑵), (Mousa et al., 2014a). 

 

Hence, the cohesive strategy (𝑌, 𝑁) is a Nash equilibrium if, and only if, (𝑥, 𝑦)  ∈  𝑁(𝑌, 𝑁). 

Moreover, the Nash domain 𝑁(𝑌, 𝑁) is a right-lower quadrant in the xy-plane (see Figure 2). 



Geometric approaches and…                             Abdelrahim M.  and Alberto P. 

 

17|     Journal of the Arab American University. Volume (3). Number (2)/2017                                         

 

Lemma 2.9 (Mousa et al., 2014a). The Nash domain 𝑵(𝑁, 𝑌) of the cohesive strategy (𝑁, 𝑌) is 

given by  

𝑵(𝑁, 𝑌) = {(𝑥, 𝑦): 𝑥 ≤ 𝐻(𝑁, 𝑌) 𝑎𝑛𝑑 𝑦 ≥ 𝑉 (𝑁, 𝑌)} , 

where the horizontal 𝐻(𝑁, 𝑌) and vertical 𝑉(𝑁, 𝑌) strategic thresholds of the (𝑁, 𝑌) strategy are 

𝐻(𝑁, 𝑌) =  𝛼11
𝑁 (𝑛1 − 1) −  𝛼12

𝑌 𝑛2       and      𝑉(𝑁, 𝑌) =  −𝛼22
𝑌 (𝑛2 − 1) − 𝛼21

𝑁 𝑛1 . 

 

 

Figure 3. Cohesive Nash equilibria domain 𝑵(𝑵, 𝒀), (Mousa et al., 2014a). 

 

Hence, the cohesive strategy (𝑁, 𝑌) is a Nash equilibrium if, and only if, (𝑥, 𝑦)  ∈  𝑵(𝑁, 𝑌). 

Moreover, the Nash domain 𝑵(𝑁, 𝑌) is a left-upper quadrant in the 𝑥𝑦-plane (see Figure 3). 

 

Figure 4. Cohesive Nash equilibria domain 𝑵(𝑵, 𝑵), (Mousa et al., 2014a). 
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Lemma 2.10 (Mousa et al., 2014a). The Nash domain 𝑵(𝑁, 𝑁) of the cohesive strategy (𝑁, 𝑁) is 

given by 

𝑵(𝑁, 𝑁) = {(𝑥, 𝑦): 𝑥 ≤ 𝐻(𝑁, 𝑁)  𝑎𝑛𝑑  𝑦 ≤ 𝑉(𝑁, 𝑁)} , 

 where the horizontal 𝐻(𝑁, 𝑁) and vertical 𝑉(𝑁, 𝑁) strategic thresholds of the (𝑁, 𝑁) strategy are 

𝐻(𝑁, 𝑁) = 𝛼11
𝑁 (𝑛1 − 1) + 𝛼12

𝑁 𝑛2     and     𝑉(𝑁, 𝑁) = 𝛼22
𝑁 (𝑛2 − 1) + 𝛼21

𝑁 𝑛1 . 

    

Hence, the cohesive strategy (𝑁, 𝑁) is a Nash equilibrium if, and only if, (𝑥, 𝑦)  ∈  𝑵(𝑁, 𝑁). 

Moreover, the Nash domain 𝑵(𝑁, 𝑁) is a left-lower quadrant in the xy-plane (see Figure 4). 

 

2.3. Mixed Nash equilibria. Recall the disjoint union set 𝐈 = I1 ⊔ I2. We describe the (mixed) 

decision of the individuals by a (mixed) strategy map 𝑆: 𝑰 →  [0, 1] that associates to each 

individual i ∈ 𝐈𝟏 the probability 𝑝𝑖 = 𝑆(𝑖)  to decide 𝑌 ∈  𝑫 and to each individual j ∈ 𝐈𝟐 the 

probability 𝑞𝑗 = 𝑆(𝑗) to decide 𝑌 ∈  𝑫. Hence, each individual i ∈ 𝐈𝟏 decides 𝑁 ∈  𝑫 with 

probability  1 − 𝑝𝑖 = 1 − 𝑆(𝑖) and each individual j ∈ 𝐈𝟐 decides 𝑁 ∈  𝑫 with probability 

 1 − 𝑞𝑗 = 1 − 𝑆(𝑗). We assume that the decisions of the individuals are independent. 

 

    Define 𝑃 = ∑ 𝑝𝑖
𝑛1
𝑖=1  , Q =  ∑ 𝑞𝑖

𝑛2
𝑗=1 , 𝑃𝑖 = 𝑃 −  𝑝𝑖  and 𝑄𝑗 = 𝑄 −  𝑞𝑗. For every individual i ∈ 𝐈𝟏, 

the 𝑌-fitness function 𝑓𝑌,1: [0, 1]  × [0, 𝑛1] ×  [0, 𝑛2]  →  ℝ + is given by 

𝑓𝑌,1(𝑝𝑖 ;  P, Q)  =  ω1
𝑌 +  α11

𝑌  𝑃𝑖  +  α12
𝑌  Q ; 

and the 𝑁-fitness function𝑓𝑁,1 ∶  [0, 1]  ×  [0, 𝑛1]  ×  [0, 𝑛2]  →  ℝ+ is given by 

𝑓𝑁,1(𝑝𝑖;  P, Q)  = ω1
𝑁  + α11

𝑁 (𝑛1 −1 − 𝑃𝑖)  +  α12
𝑁  (𝑛2 −  Q) . 

For every individual 𝑗 ∈ 𝑰𝟐, the 𝑌-fitness function 𝑓𝑌,2: [0, 1]  × [0, 𝑛1] ×  [0, 𝑛2]  →  ℝ + is given 

by  

𝑓𝑌,2(𝑞𝑗 ;  P, Q)  =  ω2
𝑌  +  α22

𝑌  Q𝑗  + α21
𝑌 P ; 

 and the 𝑁-fitness function 𝑓𝑁,2 ∶  [0, 1]  ×  [0, 𝑛1]  ×  [0, 𝑛2]  →  ℝ+ is given by 

𝑓𝑁,2(𝑞𝑗 ; P, Q) = ω2
𝑁 + α22

𝑁   (𝑛2 − 1 −Q𝑗 ) + α21
𝑁  (𝑛1− P) . 

 

Lemma 2.11 (Mousa et al., 2014a). Let 𝑆 ∶  𝑰 →  [0, 1] be a mixed strategy. For every individual 

𝑖 ∈ 𝑰𝟏, the utility function 𝑈1 ∶  [0, 1]  × [0, 𝑛1]  × [0, 𝑛2]  →  ℝ+ is given by 

𝑈1 (𝑝𝑖 ;  𝑃, 𝑄)  =  𝑝𝑖 𝑓𝑌,1(𝑝𝑖;  𝑃, 𝑄)  + (1 − 𝑝𝑖) 𝑓𝑁,1(𝑝𝑖 ;  𝑃, 𝑄) . 
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For every individual 𝑗 ∈ 𝑰𝟐, the utility function  𝑈2 ∶  [0, 1]  × [0, 𝑛1]  × [0, 𝑛2]  →  ℝ+ is given 

by  

𝑈2(𝑞𝑗 ;  𝑝, 𝑄)  = 𝑞𝑗 𝑓𝑌,2(𝑞𝑗 ;  𝑃, 𝑄)  +  (1 − 𝑞𝑗  ) 𝑓𝑁,2(𝑞𝑗;  𝑃, 𝑄) . 

 

Definition 2.12 (Mousa et al., 2014a). A strategy 𝑆∗: 𝑰 →  [0, 1] is a (mixed) Nash equilibrium, if 

𝑈𝑖(𝑆∗ )  ≥  𝑈𝑖(𝑆) for every individual 𝑖 ∈  𝑰 and for every strategy 𝑆 ∈  𝑺 with the property that 

𝑆∗(𝑗)  =  𝑆(𝑗), for every individual 𝑗 ∈  𝐼 \ {𝑖}. 

 

 Lemma 2.13 (Mousa et al., 2014a). Let  𝑆: 𝑰 →  [0, 1] be a mixed Nash equilibrium.  

(i)   If   0 <  𝑝𝑖  <  1, then 𝑥 =  −𝐴11(𝑃 − 𝑝𝑖)  −  𝐴12𝑄 +  𝐻(𝑁, 𝑁) . 

(ii)  If   0 <  𝑞𝑗  <  1, then  =  − 𝐴22 (𝑄 − 𝑞𝑗) − 𝐴21𝑃  +  𝑉(𝑁, 𝑁) . 

 

    Hence, if A11 ≠ 0, then there is not a mixed Nash equilibrium with the property that 0 <  𝑝𝑖1  ≠

 𝑝𝑖2  <  1. Furthermore, if 𝐴22 ≠ 0, then there is not a mixed Nash equilibrium with the property 

that 0 <  𝑞𝑗1  ≠  𝑞𝑗2  <  1. 

 

Definition 2.14 (Mousa et al., 2014a). The (𝑙1, 𝑘1, 𝑝; 𝑙2, 𝑘2, 𝑞) mixed strategic set is the set of all 

strategies 𝑆 ∶  𝑰 →  [0, 1] with the following properties: 

 (i)   𝑙1 = #{𝑖 ∈  𝐼1 ∶  𝑝𝑖  =  1}   𝑎𝑛𝑑   𝑘1 =  #{𝑖 ∈  𝐼1 ∶  𝑝𝑖  =  𝑝}; 

 (ii)  𝑙2 = #{𝑗 ∈  𝐼2 ∶  𝑞𝑗  =  1}  𝑎𝑛𝑑   𝑘2 =  #{𝑗 ∈  𝐼2 ∶  𝑞𝑗  =  𝑞};  

(iii) 𝑛1 − (𝑙1 + 𝑘1) = #{𝑖 ∈ 𝐼1 ∶ 𝑝𝑖 = 0}  𝑎𝑛𝑑  𝑛2 − (𝑙2 + 𝑘2) = #{𝑗 ∈ 𝐼2 ∶ 𝑞𝑗 = 0}.  

 

    For  𝑝, 𝑞 ∈  {0, 1}, we observe that the (𝑙1, 𝑘1, 𝑝;  𝑙2, 𝑘2, 𝑞) mixed strategic set is equal to the 

(𝑙1  + 𝑝𝑘1, 𝑙2 + 𝑞𝑘2) pure strategic set. 

 

Remark 2.15 (Mousa et al., 2014a). By Lemma 2.13, supposing that 𝐴11 ≠ 0  and 𝐴22 ≠ 0, a 

mixed strategy 𝑆 is a Nash equilibrium, if 𝑆 is contained in some (𝑙1, 𝑘1, 𝑝;  𝑙2, 𝑘2, 𝑞) mixed 

strategic set. 
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     Since individuals with the same type are identical, if a mixed strategy contained in the 

(𝑙1, 𝑘1, 𝑝;  𝑙2, 𝑘2, 𝑞) mixed strategic set is a Nash equilibrium, then all the strategies in 

the (𝑙1, 𝑘1 , 𝑝; 𝑙2, 𝑘2, 𝑞) mixed strategic set are Nash equilibria. 

 

Definition 2.16 (Mousa et al., 2014a). An (𝑙1 , 𝑘1, 𝑝;  𝑙2, 𝑘2, 𝑞) mixed Nash equilibrium (set) is an 

(𝑙1 , 𝑘1, 𝑝;  𝑙2, 𝑘2, 𝑞) strategic set whose strategies are Nash equilibria. The (mixed) Nash domain 

𝑵(𝑙1 , 𝑘1, 𝑝;  𝑙2, 𝑘2, 𝑞) is the set of all pairs (𝑥, 𝑦) for which the (𝑙1 , 𝑘1, 𝑝;  𝑙2, 𝑘2, 𝑞) strategic set is 

a mixed Nash equilibrium set.  

 

    An (𝑙1 , 𝑘1, 𝑝; 𝑙2, 𝑘2, 𝑞) strict mixed Nash equilibrium set is a mixed Nash equilibrium set that 

does not contain pure strategies, i.e. (𝑝, 𝑞)  ∈  [0,1]2\ {0,1}2. A strict mixed Nash domain 

𝑵(𝑙1, 𝑘1, 𝑝;  𝑙2, 𝑘2, 𝑞) is the mixed Nash domain of a strict mixed Nash equilibrium set. 

 

Geometric approaches in constructing Tilings 

    In this section, we study two strategic approaches to construct Nash domains. The two 

approaches are the global approach and the local approach. In the global approach, we will 

construct all possible tilings using the coordinates of the influence matrix. In the local approach, 

we will characterize all possible orders for the domains of the pure and mixed Nash equilibria in 

tilings using the coordinates of the influence matrix too. We should remark that all Figures 

displayed in Section 3 and Section 4 are all original and created by the authors themselves. In order 

to proceed, we need to introduce some auxiliary and generalized results. 

 

Theorem 3.1. The (𝑙1, 𝑙2) strategy is a Nash Equilibrium if and only if (𝑥, 𝑦)  ∈  𝑁(𝑙1, 𝑙2), where  

𝑁(𝑙1, 𝑙2) = {(𝑥, 𝑦): 𝐻𝐿(𝑙1, 𝑙2) ≤ 𝑥 ≤ 𝐻𝑅(𝑙1, 𝑙2)   𝑎𝑛𝑑   𝑉𝐷(𝑙1, 𝑙2) ≤ 𝑦 ≤ 𝑉𝑈 (𝑙1, 𝑙2)}, 

the left horizontal threshold 𝐻𝐿(𝑙1, 𝑙2) and the right horizontal threshold 𝐻𝑅(𝑙1, 𝑙2) of the (𝑙1, 𝑙2) 

strategy are given by  

𝐻𝐿(𝑙1, 𝑙2)  =  𝛼11
𝑁 𝑛1  +  𝛼12

𝑁 𝑛2  +  𝛼11
𝑌  −  (𝛼12

𝑌  +  𝛼12
𝑁 )𝑙2  − (𝛼11

𝑌 +  𝛼11
𝑁 )𝑙1 

   𝐻𝑅(𝑙1, 𝑙2)  =  𝛼11
𝑁  𝑛1  +  𝛼12

𝑁  𝑛2  −  𝛼11
𝑁  −  (𝛼12

𝑌  +  𝛼12
𝑁 )𝑙2  −  (𝛼11

𝑌 + 𝛼11
𝑁 ) 𝑙1 , 

the down vertical threshold 𝑉𝐷(𝑙1, 𝑙2) and the the upper vertical threshold 𝑉𝑈(𝑙1, 𝑙2)  of the 

(𝑙1, 𝑙2) strategy are given by  

𝑉𝐷(𝑙1, 𝑙2)  =  𝛼22
𝑁 𝑛2  +  𝛼21

𝑁 𝑛1  +  𝛼22
𝑌  − (𝛼21

𝑌  +  𝛼21
𝑁 )𝑙2  −  (𝛼22

𝑌 + 𝛼22
𝑁 )𝑙2 



Geometric approaches and…                             Abdelrahim M.  and Alberto P. 

 

21|     Journal of the Arab American University. Volume (3). Number (2)/2017                                         

     𝑉𝑈 (𝑙1, 𝑙2) =  𝛼22
𝑁  𝑛2  +  𝛼21

𝑁  𝑛1  − 𝛼22
𝑁  −  (𝛼21

𝑌  +  𝛼21
𝑁 )𝑙1  −  (𝛼22

𝑌 + 𝛼22
𝑁 ) 𝑙2 . 

 

Proof. The (𝑙1, 𝑙2) strategy is a Nash equilibrium if, and only if, the following four inequalities 

hold 

U1(Y; 𝑙1, 𝑙2)  ≥  U1(N; 𝑙1 −  1, 𝑙2) ,       U1(N; 𝑙1, 𝑙2)  ≥  U1(Y ; 𝑙1  +  1, 𝑙2) 

and  

U2(Y ; 𝑙1, 𝑙2)  ≥  U2(N; 𝑙1, 𝑙2  −  1) ,     U2(N; 𝑙1 , 𝑙2)  ≥  U2(Y ; 𝑙1, 𝑙2 +  1) . 

    Hence, the proof of Theorem 3.1 follows by rearranging the terms in the previous inequalities.                                                                                                                   

■ 

 

Hence, 𝑁(𝑙1, 𝑙2) is the Nash Equilibrium domain of the (𝑙1, 𝑙2) strategy (see Figure 5). Each 

geometric graph in Figure 5 is called a tiling results by joining the four quadrants described in 

Figures 1, 2, 3 and 4 in one geometric graph. The horizontal preferences 𝑥 for individuals of type 

𝑡1 is being the 𝑥-axis and the vertical preferences 𝑦 for individuals of type 𝑡2 is being the y-axis. 

Each tiling indicates the way the horizontal thresholds 𝐻(𝑌, 𝑌), 𝐻(𝑌, 𝑁), 𝐻(𝑁, 𝑌), 𝐻(𝑁, 𝑁) are 

ordered along the horizontal 𝑥-axis and the way the vertical thresholds 𝑉(𝑌, 𝑌), 𝑉(𝑌, 𝑁), 𝑉(𝑁, 𝑌), 

𝑉(𝑁, 𝑁) are ordered along the vertical 𝑦-axis. The order of these horizontal thresholds and vertical 

thresholds gives rise to the Nash equilibria location, and thus determines the Nash domain for each 

strategy. More details about the construction of these tilings will be discussed in the coming 

section. 

 

   The following thresholds determine the domains of the (𝑙1, 𝑙2) disparate Nash equilibria. 

 𝐻𝑅(𝑙1, 𝑙2)  =  𝐻𝐿(𝑙1  +  1, 𝑙2),              𝐻𝐿(𝑙1, 𝑙2)  =  𝐻𝐿 (𝑙1, 𝑙2 +  1)  + 𝐴12, 

  𝑉𝑈(𝑙1, 𝑙2)  =  𝑉𝐷(𝑙1, 𝑙2 +  1),               𝐻𝑅(𝑙1, 𝑙2)  =  𝐻𝑅(𝑙1, 𝑙2 +  1)  +  𝐴12, 

𝑉𝑈 (𝑙1, 𝑙2)  =  𝑉𝐷(𝑙1, 𝑙2)  − 𝐴22,          𝑉𝐷(𝑙1, 𝑙2)  =  𝑉𝐷(𝑙1 +  1, 𝑙2)  + 𝐴21, 

 𝐻𝑅(𝑙1, 𝑙2)  =  𝐻𝐿(𝑙1, 𝑙2)  −  𝐴11,         𝑉𝑈 (𝑙1, 𝑙2)  = 𝑉𝑈 (𝑙1 +  1, 𝑙2)  +  𝐴21 . 

     

    We observe that (see Figure 5) if 𝐴11 > 0 or 𝐴22 > 0, then there are no (𝑙1, 𝑙2) Nash Equilibria, 

for every 𝑙1 ∈  {1, . . . , 𝑛1 − 1}  and 𝑙2 ∈  {1, . . . , 𝑛2 − 1}. However, if 𝐴11 ≤ 0 and 𝐴22 ≤ 0, then 

there are (𝑙1, 𝑙2) Nash Equilibria, for every 𝑙1  ∈  {1, ⋯ , 𝑛1 −  1} and  𝑙2  ∈  {1, ⋯ , 𝑛2 −  1}. 
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Figure 5. Disparate Nash equilibria when 𝒏𝟏 = 𝟒 and 𝒏𝟐 = 𝟑. Left: 𝑨𝟏𝟏 < 𝟎, 𝑨𝟏𝟐 < 𝟎, 𝑨𝟐𝟏 < 𝟎  and 

𝑨𝟐𝟐 < 𝟎. The yellow rectangles include two pure Nash equilibria and a mixed Nash equilibrium. 

Right: 𝑨𝟏𝟏 < 𝟎, 𝑨𝟏𝟐 > 𝟎, 𝑨𝟐𝟏 < 𝟎  and 𝑨𝟐𝟐 < 𝟎. The yellow rectangles have no pure Nash equilibrium 

but include a mixed Nash equilibrium. 

    

Lemma 3.2. The Nash domains satisfy the following properties: 𝑁(𝑛1, 𝑛2)  =  𝑁(𝑌, 𝑌), 

𝑁(𝑛1, 0)  =  𝑁(𝑌, 𝑁), 𝑁(0, 𝑛2)  =  𝑁(𝑁, 𝑌), 𝑁(0,0)  =  𝑁(𝑁, 𝑁). 

 

Proof. We prove 𝑁(𝑛1, 𝑛2)  =  𝑁(𝑌, 𝑌) and the proof for the other Nash domains follows similarly. 

Substituting 𝑙1 by 𝑛1 and 𝑙2 by 𝑛2 in the horizontal and vertical thresholds stated in Theorem 3.1, 

we have that  

𝐻𝐿(𝑛1, 𝑛2)  =  𝛼 11
𝑁 𝑛1  +  𝛼 12

𝑁 𝑛2  +  𝛼11
𝑌 −  (𝛼12

𝑌 + 𝛼12
𝑁 )𝑛2  −  (𝛼11

𝑌 + 𝛼11
𝑁 )𝑛1 

                           =  − 𝛼 11
𝑌 (𝑛1  −  1)  −  𝛼 12

𝑌 𝑛2  

                           =  𝐻(𝑌, 𝑌) 

and  

𝑉𝐷(𝑛1, 𝑛2)  =  𝛼 22
𝑁 𝑛2  +  𝛼 21

𝑁 𝑛1  +  𝛼 22
𝑌  −  (𝛼21

𝑌 +  𝛼 21
𝑁 ) 𝑛1  −  (𝛼22

𝑌 +  𝛼 22
𝑁 ) 𝑛1 

                       =  − 𝛼 22
𝑌 (𝑛2  −  1)  −  𝛼 21

𝑌 𝑛1 

                       =  𝑉 (𝑌, 𝑌) . 

 Hence, 𝑁(𝑛1, 𝑛2)  =  𝑁(𝑌, 𝑌) and we conclude the proof.                                         ■ 
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3.1. Global approach. We will see that the coordinates of the influence matrix together with the 

total number of individuals play a significant role to determine the Nash domains for a given 

strategy. We will also denote to the Nash domains 𝑁(𝑙1, 𝑙2) by 𝑄(𝑙1, 𝑙2) as being referred to the 

quadrants. We notify that a pair of thresholds (𝐻(𝑌, 𝑌), 𝑉(𝑌, 𝑌)) 

(respectively, (𝐻(𝑌, 𝑁), 𝑉(𝑌, 𝑁)), (𝐻(𝑁, 𝑌), 𝑉(𝑁, 𝑌)), (𝐻(𝑁, 𝑁),  𝑉(𝑁, 𝑁))) form a corner for 

the quadrant 𝑄(𝑌, 𝑌)(respectively, 𝑄(𝑌, 𝑁),  𝑄(𝑁, 𝑌), 𝑄(𝑁, 𝑁)). We summarize the global 

approach by the following remark which provides a strategy for constructing all possible tilings: 

Remark 3.3 (Golden Tiling). Let 𝑆1  =  (𝐴12, 𝐴22) and 𝑆2 =  (𝐴11, 𝐴21). Every tiling is 

determined by a corner of quadrant and a vector of stairs (𝑆1, 𝑆2) together with the total number of 

individuals.  

 

    We now emphasize Remark 3.3 by referring to the Figures 6, 7, 8 and 9 and by ordering the 

following steps: 

 Connect the losangles between the corner of the quadrants 𝑄(𝑌, 𝑌), 𝑄(𝑌, 𝑁), 𝑄(𝑁, 𝑌)  and 

𝑄(𝑁, 𝑁); 

 Use the coordinates of the influence matrix (𝐴22, 𝐴12) to construct the left and right green 

ladders boundaries of the losangles (see Figures 7 and 8);  

 Use the coordinates of the influence matrix (𝐴11, 𝐴21) to construct the upper and down blue 

ladders boundaries of the losangles (see Figures 6 and 9);  

 We repeat the second and third items in a similar fashion, but with different locations;  

 The ladders intersect the losangles in the points upper-down 

𝒋𝟐𝑨𝟏𝟐 

𝒏𝟐
    for  𝑗

2
 =  0, 1, . . . , 𝑛2; 

 The ladders intersect the losangles in the points left-right 

𝒋𝟏𝑨𝟐𝟏 

𝒏𝟏
   for   𝑗1  =  0, 1, . . . , 𝑛1. 
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Figure 5. Left: Left green boundaries shift 1: The rule:  Go in the boundaries in the horizontal 

dimension of the right corner and come in from outside of the horizontal boundaries in the horizontal 

dimension of the left corner. Right: Left green boundaries shift 2: The rule: Go out from the 

boundaries in the horizontal dimension of the left corner and come in from inside the horizontal 

boundaries in the horizontal dimension of the right corner. 

We remark that shifts in the left green ladders boundaries of the losangles are different from right 

green ladders boundaries of the losangles; shifts in the upper blue ladders boundaries of the 

losangles are different from down blue ladders boundaries of the losangles; and down blue stars 

start in blue stars and they end in the green circles, but upper blue stars start in the green circles 

and end in the blue stars. 
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Figure 6. Left: Right green boundaries shift 1: The rule:  Go in the boundaries in the horizontal 

dimension of the left corner and come in from outside of the horizontal boundaries in the horizontal 

dimension of the right corner. Right: Right green boundaries shift 2: The rule: Go out from the 

boundaries in the horizontal dimension of the right corner and come in from inside the horizontal 

boundaries in the horizontal dimension of the left corner. 

 

We see that there are eight different boundaries kind of shifts: left green boundaries shift 1, left 

green boundaries shift 2, right green boundaries shift 1, right green boundaries shift 2, down blue 

boundaries shift 1, down blue boundaries shift 2, upper blue boundaries shift 1 and upper blue 

boundaries shift 2. 

 

      

Figure 7. Left: Down blue boundaries shift 1: The rule:  Go out of the boundaries in the vertical 

dimension of the upper corner and come in from inside the vertical boundaries in the vertical 
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dimension of the lower corner. Right: Down blue boundaries shift 2: The rule:  Go in the boundaries 

in the vertical dimension of the lower corner and come in from outside the vertical boundaries in the 

vertical dimension of the upper corner. 

 

      

Figure 8. Left: Upper blue boundaries shift 1: The rule: Go in of the boundaries in the vertical 

dimension of the upper corner and come in from outside the vertical boundaries in the vertical 

dimension of the lower corner. Right: Upper blue boundaries shift 2: The rule: Go out the boundaries 

in the vertical dimension of the lower corner and come in from inside the vertical boundaries in the 

vertical dimension of the upper corner. 

 

 

Recall that 𝑶 is the set of all possible strategic occupation vectors. Let the horizontal and vertical 

set of strategies be given, respectively, by 

 𝑶𝐻 =  {(0, 𝑙2)}  ∪  {(𝑛1, 𝑙2)}       and      𝑂𝑉 =  {(𝑙1, 0)}  ∪  {(𝑙1, 𝑛2)}  

for every 𝑙1  ∈  {0, 1, ⋯ , 𝑛1} and 𝑙2  ∈  {0, 1, ⋯ , 𝑛2} .  

 

    The following theorem determines the conditions that guarantee the existence of a strictly mixed 

Nash equilibrium for a given tiling. 

 

Theorem 3.4. Given an influence matrix 𝐴 and a point of stairs 𝑆 =  (𝑆1, 𝑆2). The corresponding 

tiling 𝑇(𝐴, 𝑆) has the following properties:  
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(i) if 𝐴12𝐴21 >  0, then there is a strictly mixed strategies only in the Nash equilibria 

domain 𝑁(𝑙1, 𝑙2) for every pure strategy (𝑙1, 𝑙2)  ∈  𝑶\{𝑶𝐻  ∪  𝑶𝑉  };  

(ii) if 𝐴12𝐴21 <  0, then there is a strictly mixed strategies only outside the Nash equilibria 

domain 𝑁(𝑙1, 𝑙2) for every pure strategy (𝑙1, 𝑙2) ∈ 𝑶\{𝑶𝐻 ∪ 𝑶𝑉};  

(iii) if 𝐴12𝐴21 =  0, then there are no strictly mixed strategies for every pure strategy 

(𝑙1, 𝑙2)  ∈ 𝑶. 

 

Proof. By Contradiction. We proof case (i) and the proof of cases (ii)−(iii) follows similarly. 

Assume that there is a strictly mixed Nash equilibrium strategy  

𝑆 ∶  𝐼 →  [0, 1] 

in the Nash equilibria domain 𝑁(𝑙1, 𝑙2) for some occupation vector (𝑙1, 𝑙2)  ∈  {𝑶𝐻  ∪  𝑶𝑉  }. 

Note that 𝐴12𝐴21 >  0  implies that either 𝐴12 >  0  and 𝐴21 >  0  (individuals of a certain type 

affect positively the other type of individuals to chair a particular decision) or 𝐴12 <  0  and 

𝐴 21 <  0 (individuals of a certain type affect negatively the other type of individuals to chair 

a particular decision). If 𝑁(𝑙1, 𝑙2)  =  𝑁(0, 0), then 𝑝𝑖 =  𝑞𝑗  =  0  for all 𝑖 =  0, 1, ⋯ , 𝑛1 and 

𝑗 =  0, 1, ⋯ , 𝑛2 which contradicts the fact that 𝑆 ∶  𝐼 →  [0, 1] is a strictly mixed Nash 

equilibrium strategy. Similarly, if 𝑁(𝑙1, 𝑙2)  =  𝑁(𝑛1, 𝑛2), then 𝑝𝑖 =  𝑞𝑗  =  1  for all 𝑖 =

 0, 1, ⋯ , 𝑛1 and 𝑗 =  0, 1, ⋯ , 𝑛2 which contradicts the fact that 𝑆 ∶  𝑰 →  [0, 1] is a strictly 

mixed Nash equilibrium strategy. If 𝑁(𝑙1, 𝑙2)  =  𝑁(0, 𝑙2) (resp. 𝑁(𝑙1, 𝑙2)  =  𝑁(𝑙1, 0)), then 

𝑝𝑖 =  0  for all 𝑖 =  0, 1, ⋯ , 𝑛1 (resp. 𝑞𝑗 =  0  for all 𝑗 =  0, 1, ⋯ , 𝑛2) which gives a 

contradiction too.                                                 ■ 

 

    In Figure 10, we show an example of two rotated tilings in which the horizontal thresholds 

𝐻(𝑌, 𝑌), 𝐻(𝑌, 𝑁), 𝐻(𝑁, 𝑌), 𝐻(𝑁, 𝑁) are ordered along the horizontal x-axis and the vertical 

thresholds 𝑉(𝑌, 𝑌), 𝑉(𝑌, 𝑁), 𝑉(𝑁, 𝑌), 𝑉(𝑁, 𝑁) are ordered along the vertical y-axis. The 

influence matrix for the left tiling and the influence matrix for the right tiling are, respectively, 

given by 

A = (
−2 3
−3 −2

)        and         A = (
−2 −3
3 −2

) . 
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Figure 9. Pure and mixed Nash equilibria. 

Hence, small changes in the coordinates of the influence matrix can create a different tiling. In 

(Mousa et al., 2011a), it was shown that there are 289 combinatorial classes of decision tilings, 

described by the decision Bussola, which demonstrate the high complexity of making decision. 

 

3.2. Local Approach. The local approach uses the signs of the coordinates of the influence 

matrix to determine the domains of the pure and mixed strategies in all tilings (see Figure 11). 

We observe that changing the signs of the pairs (𝐴11, 𝐴21) and (𝐴12, 𝐴22) imply different orders 

for the pure strategies (𝑙1, 𝑙2). For all   𝑖, 𝑗 ∈  {1, 2}, let 

𝑬𝒊𝒋 =  −𝑨𝒊𝒋 . 

 

    Let us define the horizontal axis by 𝐸12 and the vertical axis by 𝐸21. The sign of the pair 

(𝐸12, 𝐸21) determines a certain order of pure strategies (𝑙1, 𝑙2). Note that there are four possible 

orders for the pure strategies that are not located along any axis which are given by small white 

rectangles in Figure 11. 
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Figure 10. Rotating pure Nash domains using the local approach. 

 

    We study the rotation in the pure Nash domains. Given the location of the pure strategies in 

the small white rectangles, We observe the following: If the signs of the coordinates 

(𝐸12, 𝐸21) is (+, +), then the pure strategies are rotated to make new ordering given by the 

small red rectangles that appear in Figure 12. 

 

 

        Figure 11. Rotating the pure strategies when the signs of (𝑬𝟏𝟐, 𝑬𝟐𝟏) 𝐢𝐬 (+, +).   

The new order of the pure strategies moves to the small red rectangles. 
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If the signs of the coordinates (𝐸12, 𝐸21) is (+, −), then the pure strategies are rotated to make 

new ordering given by the small orange rectangles appear in Figure 13. 

 

   Figure 12: Rotating the pure strategies when the signs of (𝑬𝟏𝟐, 𝑬𝟐𝟏) 𝐢𝐬 (+, −).   

  The new order of the pure strategies moves to the small orange rectangles. 

 

If the signs of the coordinates (𝐸12, 𝐸21) is (−, +), then the pure strategies are rotated to make 

new ordering given by the small green rectangles appear in Figure 14. 

 

Figure 13.  Rotating the pure strategies when the signs of (𝑬𝟏𝟐, 𝑬𝟐𝟏) 𝒊𝒔 (−, +). 

The new order of the pure strategies moves to the small green rectangles. 
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If the signs of the coordinates (𝐸12, 𝐸21) is (−, −), then the rotated to make new ordering given 

by pure strategies are the small blue rectangles appear in Figure 15. 

 

 

Figure 14. Rotating the pure strategies when the signs of (𝑬𝟏𝟐, 𝑬𝟐𝟏) 𝐢𝐬 (−, −). 

The new order of the pure strategies moves to the small blue rectangles. 

 

Mixed strategies in local approach 

    We study geometrically two cases where mixed strategies co-exist. We present the first case 

in section 4.1, where no intersection between the pure strategies occurs; the second case will 

be introduced in section 4.2, where an intersection between the pure strategies occurs. 

 

No intersections between pure the strategies 

 Without loss of generality, we will consider the case where the signs of (𝑬𝟏𝟐, 𝑬𝟐𝟏) is (+, +) and 

focus on the mixed strategies that occurs in the corresponding Figure 12. The other three cases 

follow in a similar way. Recall that 𝑝 ∈  [0, 1] is the probability of an individual of type 𝑡1 

makes decision 𝑌 and 𝑞 ∈  [0, 1] is the probability of an individual of type 𝑡2 makes decision  

𝑌. 
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Theorem 4.1. Consider the case where (𝐸12, 𝐸21) is (+, +) . Then there is a mixed strategy 

(𝑙1 + 𝑝, 𝑙2 + 𝑞) with 

 𝑝 =
𝑞1

√|𝐴21|2 + |𝐴11|2
 

and  

𝑞 =
𝑞2

√|𝐴12|2 + |𝐴22|2
 

for every 1 <  𝑙1  <  𝑛1  −  1 and 1 <  𝑙2  <  𝑛2  −  1, where 𝑞1 and 𝑞2 are nonnegative real 

values. 

 

Proof. Note that if the mixed strategies (𝑙1  ±  𝑝, 𝑙2 ±  𝑞) are located along the horizontal and 

vertical axes (see the black rectangles in Figure 16), then they become pure and given by 

(𝑙1  ±  
𝐴21

|𝐴21| 
, 𝑙2  ±  

𝐴12

|𝐴12| 
) . 

Considering the case where  (𝐸12, 𝐸21) is (+, +). Thus, p and q may have now real values 

instated of being natural and their values are derived by applying the Pythagorean Theorem 

among the three sides of right triangles given in Figure 16, which ends the proof.                                                                                       

■ 
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Figure 15. (𝒍𝟏 + 𝒑, 𝒍𝟐 + 𝒒) is the mixed strategy when (𝑬𝟏𝟐, 𝑬𝟐𝟏) 𝐢𝐬 (+, +). 

 

Bifurcations between pure strategies 

In this section, we study geometrically the bifurcations between the pure strategies and see the 

signs effect of the coordinates of the influence matrix. In Figures 17, 19, 20 and 18, we show 

all possible bifurcations between the pure strategies that may occur in the corresponding 

Figures 12, 13, 14 and 15, respectively. 

 In Figure 17, we show the bifurcations between the pure strategies when (𝑬𝟏𝟐, 𝑬𝟐𝟏) = (+, +). 

The blue, green and yellow rectangles represent the black rectangles (pure strategies) on the 

horizontal, vertical and diagonal axis in Figure 12, respectively. The red rectangles represent 

the red rectangles in Figure 12 and they describe the shifts in the black ones. We observe that 

there are three red overlaps between, where the mixed strategies may occur. 
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Figure 16. The bifurcations between the pure strategies when(𝑬𝟏𝟐, 𝑬𝟐𝟏) = (+, +). 

 

In Figure 18, we show the bifurcations between the pure strategies when(𝑬𝟏𝟐, 𝑬𝟐𝟏) = (−, −). 

The blue, green and yellow rectangles represent the black rectangles (pure strategies) on the 

horizontal, vertical and diagonal axis in Figure 15, respectively. The red rectangles represent 

the blue rectangles in Figure 15 and they describe the shifts in the black ones. We observe that 

there are three red overlaps between, where the mixed strategies may occur. 

 

Figure 17. The bifurcations between the pure strategies when(𝑬𝟏𝟐, 𝑬𝟐𝟏) = (−, −). 
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    In Figure 19, we show the bifurcations between the pure strategies when (𝑬𝟏𝟐, 𝑬𝟐𝟏) =

(+, −)). The blue, green and yellow rectangles represent the black rectangles (pure strategies) 

on the horizontal, vertical and diagonal axis in Figure 15, respectively. The red rectangles 

represent the orange rectangles in Figure 13 and they describe the shifts in the black ones. We 

observe that there are no overlaps between. 

 

Figure 18. The bifurcations between the pure strategies when(𝑬𝟏𝟐, 𝑬𝟐𝟏) = (+, −). 

In Figure 20, we show the bifurcations between the pure strategies when (𝑬𝟏𝟐, 𝑬𝟐𝟏) = (−, +). 

The blue, green and yellow rectangles represent the black rectangles (pure strategies) on the 

horizontal, vertical and diagonal axis in Figure 14, respectively. The red rectangles represent 

the green rectangles in Figure 14 and they describe the shifts in the black ones. We observe that 

there are no overlaps between. 
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Figure 19. The bifurcations between the pure strategies when(𝑬𝟏𝟐, 𝑬𝟐𝟏) = (−, +). 

 

Conclusions 

Resorting to the Dichotomous decision model presented in (Mousa et al., 2014a), two geometric 

approaches have been studied to construct all possible decisions tilings in which pure and mixed 

Nash equilibria co-exist and change with the relative decision preferences of the individuals. 

We have characterized all possible Nash domains for pure and mixed strategies and discussed 

the dependence of Nash equilibria on the parameters of the model. We have seen how the 

coordinates of the influence matrix and the total number of individuals can alter the order of 

the horizontal and vertical thresholds which allow the occurrence of bifurcations with and 

without overlaps between the pure strategies. 
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 ملخصال
مكن مجموعة من الأفراد اتخاذ قرارات بديلة، تم دراسة نهجين هندسيين لبناء جميع القرارات المفضلة و الحدين الذي ي   ي بالرجوع إلى نموذج القرار ذ

يجاد كل م  إتالأفراد. و الممكن اتخاذها. لقد تم دراسة الطريقة التي يتواجد فيها التوازن الأفضل و كيف يتغير هذا التوازن بتغيير التفضيلات عند 

تم تحديد مجال كل المتغيرات الذي يضمن مثل هذه التوازنات النقية أن تكون إما استراتيجيات و )النقية منها والمختلطة(  مجالات ناش الاستراتيجية 

اتيجيات ناش متماسكة أو متباينة. لقد تم توضيح أثر كل من مصفوفة الإحداثيات و العدد الكلي للأفراد على وقوع التداخلات المتعددة بين الإستر 

 النقية.
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