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Introduction

The Dichotomous decision model is a recent game theoretical model introduced by Mousa et al.
in 2014 (Mousa et al., 2014a). In this model, there are just two possible decisions that individuals
can make. For instance, they have to choose between yes or no, i.e. d € D = {Yes, No}. The
individuals will have to make decisions according to their preferences. The preferences have the
interesting feature of taking into account not only how much the individuals like or dislike a certain
decision but also the other individuals’ decisions. This decision model has wide applications in real
life and can be used to understand better the social interaction (Mousa et al., 2011a; Mousa et al.,
2015a), tourism industry (Brida et al., 2010; Brida et al., 2011) and economical and political
revolutions (Almeida et al., 2011a; Almeida et al., 2011b; Mousa et al., 2011b; Mousa et al.,
2014b).

The Dichotomous decision model is a modified version of the game theoretical model introduced
by Pinto et al. (Almeida et al., 2011a) who developed a psychological game model for reasoned
action theories inspired by the works of J. Cownley and M. Wooders (Conley and Wooders, 2001).
They studied the way saturation, boredom and frustration can lead to desperate strategies (if the
individuals of same group will make different decisions), and no saturation situations can lead to
cohesive strategies (if all the individuals belonging to a same group will make the same decision).
Ajzen (Ajzen, 2002) and Baker et al. (Baker et al., 2008) predict the way individuals turn intentions
into behaviors and this prediction is the main goal in Planned Behavior or Reasoned Action

theories.

Mousa et al. (Mousa et al., 2015a) show that groups are formed by individuals with the same
utility, and a group is cohesive if every individual has a gain in his utility when other individuals
of the same group make the same decision as his. Furthermore, they show that individuals in a
same group can make different decisions at certain Nash equilibria. In a dynamical version of the
decision model (Mousa et al., 2014a), the authors exhibit solutions that are periodic attracting
cycles and so the individuals can keep changing the probabilities that they use to make a decision
or another around some thresholds. These thresholds show the appearance of hysteretic-like
behavior in the decision models. As in dynamics (Mousa, 2013), small changes in the parameters

might imply the appearance and disappearance of the pure Nash equilibria.
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The Dichotomous decision model has been extended to a general model (Mousa, 2013), and
other future extension formulation for the decision model would be to include some kind of
stochastic pattern in the model parameters. Recent research articles, that handle a stochastic
decision problem for individuals, is introduced by Mousa et al. (Mousa et al., 2015b; Mousa et al.,
2016).

In this paper, we study two geometric approaches to construct all possible Nash eqilibria for the
decisions tiling. We characterize the space of all parameters for the Dichotomous decision model,
where the pure and mixed strategies are Nash equilibria, and we find the corresponding Nash
domains. We will see how the coordinates of the influence matrix together with the total number
of individuals encode all the relevant information for the existence of Nash equilibria strategies.
The existence of these equilibria is also related to size effect of the relative decision preferences
for the individuals. The two approaches rise in making 289 different combinatorial classes of
decision tiling by capturing the information that rises from the crowding type of individuals,

reflecting the complexity of the yes-no decision model (Mousa et al., 2011a).

This paper is organized as follows: In Section 2 we review the Dichotomous decision model and
some main results introduced in (Mousa et al., 2014a), in Section 3, we study two different strategic
approaches to construct geometrically all possible tilings and determine the Nash domains for the

pure and mixed strategies and we conclude in Section 5
The Dichotomous decision model

In this section, we review the Dichotomous decision model introduced in (Mousa et al., 2014a)
with some main results. In section 2.1 we introduce the decision model. In section 2.2 we study the
pure Nash equilibria and in section 2.3 we study the mixed Nash equilibria.

2.1. Model set up. The model has two types T = {t,, t,} of individuals. Let I; = {1,---,n,} be
the set of all individuals with type t;, and let I, = {1, ---, n,} be the set of all individuals with
type t,. Let I = I, [[ I, be the disjoint union. The individual i € I has to make one decision d €
D = {y,N}.

! Similarly, we can consider that there is a single individual with type tp that has to make ny, decisions, or we can
also consider a mixed model using these two possibilities.
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Let L be the preference decision matrix whose coordinates w{} indicate how much an individual

with type t,, likes or dislikes, making decision d € D

_(wi wi

S \wl owy)
The coordinates of the preference decision matrix indicate for each type of individuals the decision
that the individuals prefer, i.e. the taste type of the individuals (Mousa et al., 2011a; Mousa et al.,
2014a; Mousa et al., 2015a). Let N; be the preference neighbors matrix whose coordinates

ag, indicate how much an individual with type ¢,, who decides d likes or dislikes that an individual

with type t, also makes decision d

N, = afy “fz
17 \ad, ai)
21 22
The coordinates of the preference neighbors matrix indicate, for each type of individuals whose

decision is d, whom they prefer, or do not prefer, to be with in each decision, i.e. the crowding type
of the individuals (Brida et al., 2010; Conley and Wooders, 2001; Mousa et al., 2014a).

Definition 2.1 (Mousa et al., 2014a). The (pure) decision of the individuals is a (pure) strategy

map S: I — D that associates to each individual i € I its decision S(i) € D.

Let S be the space of all strategies S. For a given a strategy S € S, let O be the strategic decision

matrix whose coordinates L‘}, = L‘}, (S) indicate the number of individuals with type t,,, who make

Ly Ly
0, = (L; L}V) .
2 2

Definition 2.2 (Mousa et al., 2014a). Let S € §. The strategic decision vector associated to a

decision d

strategy S is the vector

(1) = (). (),

where l; (resp. ny — ;) is the number of individuals with type t; who make the decision

Y (resp.N), and [, (resp. n, — ;) is the number of individuals with type t, who make the
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decision Y (resp. N). Furthermore, the set O of all possible strategic decision vectors is defined
by

0=1{0-,n} x {0,-,n,}.
The utility function U;: D X O — R of an individual with type t; is defined by
UV, L) = +al (L — 1) + alyly ;
Ui(N; 13, ) = o} +afi(ng — I = D) + agy(n, — 1)
and the utility function U,: D X O — R of an individual with type t, is defined by
Up(Y; 1, 1) = wy + azy(ly — 1) + agily
U,(N; 1y, 1) = Y +al,(ny — 1, — 1)+ adi(ny — 1Y) .

Given a strategy S € §, the utility U;(S) of an individual i with type ¢y, is given
by Uy (S(D; 11 (5), 15 (5)).

Definition 2.3 (Mousa et al., 2014a). The horizontal relative decision preference of the individuals
with type t, is defined by

Xx=wl — ol
and the vertical relative decision preference of the individuals with type t, is defined by

_ Y N
y=w; —wy .

If x > 0, the individuals with type t; prefer to decide Y , without taking into account the
influence of the others. If x = 0, the individuals with type t, are indifferent to decide Y or N,
without taking into account the influence of the others. If x < 0, the individuals with type t, prefer

to decide N, without taking into account the influence of the others.

Definition 2.4 (Mousa et al., 2014a). For i,j € {1, 2}, we define the coordinates of the influence
matrix A by

— oY N
Aij = aij +aij'
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If A;; > 0, the individuals with type ¢; have a positive influence over the utility of the
individuals with type t; . If A;; = 0, the individuals with type t; are indifferent for the utility of
the individuals with type ¢; . If A;; < 0, the individuals with typet; have a negative influence over

the utility of the individuals with type t;.

Definition 2.5 (Mousa et al., 2014a). A strategy S*: I — D is a Nash equilibrium if, for every
individual i € I and for every strategy S, with the property that S* (j) = S(j) for every
individual j € I\ {i}, we have U;(S*) = U; (S). Furthermore, the Nash equilibrium domain E(S)

of a strategy S is the set of all pairs (x, y) for which S is a Nash Equilibrium.

2.2. Pure Nash equilibria. The pure strategies are either cohesive strategies or disparate strategies.

Definition 2.6 (Mousa et al., 2014a). A cohesive strategy is a pure strategy in which all individuals
with the same type prefer to make the same decision. A disparate strategy is a pure strategy that is
not cohesive, i.e. a pure strategy in which there are some individuals with the same type who prefer
to make different decisions.

Lemma 2.7 (Mousa et al., 2014a). The Nash domain N(Y,Y) of the cohesive strategy (Y,Y) is
given by
NY,Y)={(x,y):x=>HY,Y) andy =2V (Y,Y)},
where the horizontal H(Y,Y) and vertical V (Y, Y) strategic thresholds of the (Y,Y) strategy are
given by
HY,Y) = —af;(ny —1) —af;n, and  V(V,Y) = —az,(n, — 1) — aj; ny.

Hence, the cohesive strategy (Y,Y) is a Nash equilibrium if, and only if, (x,y) € N(Y,Y).
Moreover, the Nash domain N(Y,Y) is the right-upper quadrant in the xy-plane (see Figure 1).
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[N(YY)

V(YY)

H(Y,Y) x

Figure 1. Cohesive Nash equilibria domain N(Y,Y), (Mousa et al., 2014a).

Lemma 2.8 (Mousa et al., 2014a). The Nash domain N (Y, N) of the cohesive strategy (Y, N) is
given by
N(Y,N)={(x,y):x=2H(Y,N) and y <V (Y,N)},
where the horizontal H(Y, N) and vertical V (Y, N) strategic thresholds of the (Y, N) strategy are
given by
H(Y,N)= —af;(n; — 1) + alin, and V(Y,N) =ady(n,—1) —alin,.

——

{ ]
VIY,N) N(Y,N)

&
H(Y,N) X

Figure 2: Cohesive Nash equilibria domain N(Y, N), (Mousa et al., 2014a).

Hence, the cohesive strategy (Y,N) is a Nash equilibrium if, and only if, (x,y) € N(Y,N).

Moreover, the Nash domain N (Y, N) is a right-lower quadrant in the xy-plane (see Figure 2).
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Lemma 2.9 (Mousa et al., 2014a). The Nash domain N(N,Y) of the cohesive strategy (N,Y) is
given by
N(N,Y) ={(x,y):ix <H(N,Y)andy =V (N,Y)},
where the horizontal H(N,Y) and vertical V(N,Y) strategic thresholds of the (N, Y) strategy are
HIN,Y) = afi(ny — 1) — afn, and  V(N,Y) = —az,(n, — 1) —azin; .

N(N,Y)|

®
V(N,Y)

H(N,Y) X

A

Figure 3. Cohesive Nash equilibria domain N(N,Y), (Mousa et al., 2014a).

Hence, the cohesive strategy (N,Y) is a Nash equilibrium if, and only if, (x,y) € N(N,Y).
Moreover, the Nash domain N(N,Y) is a left-upper quadrant in the xy-plane (see Figure 3).

Y

V(N,N)

N(N,N)

H(N,N) X

Figure 4. Cohesive Nash equilibria domain N(N, N), (Mousa et al., 2014a).
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Lemma 2.10 (Mousa et al., 2014a). The Nash domain N(N, N) of the cohesive strategy (N, N) is
given by
N(N,N) ={(x,y):x <H(N,N) and y <V(N,N)},
where the horizontal H(N, N) and vertical V (N, N) strategic thresholds of the (N, N) strategy are
H(N,N) = aY(n; — 1)+ alyn, and V(N,N)=ad,(n, —1) +alin, .

Hence, the cohesive strategy (N, N) is a Nash equilibrium if, and only if, (x,y) € N(N,N).

Moreover, the Nash domain N(N, N) is a left-lower quadrant in the xy-plane (see Figure 4).

2.3. Mixed Nash equilibria. Recall the disjoint union set I = I, U I,. We describe the (mixed)
decision of the individuals by a (mixed) strategy map S: I — [0, 1] that associates to each
individual i € I; the probability p; = S(i) to decide Y € D and to each individual j € I, the
probability g; = S(j) to decide Y € D. Hence, each individual i € I; decides N € D with
probability 1—p; =1 —5(i) and each individual j € I, decides N € D with probability

1—gq; =1—S5(j). We assume that the decisions of the individuals are independent.

Define P = Y12, p;,Q = %72, 4, Pi =P~ p; and Q; = Q — g;. For every individual i € I,
the Y-fitness function fy 1:[0,1] X [0,n;] X [0,n,] = R * isgiven by
frai; P,Q) = o] + «f; P + o, Q;
and the N-fitness functionfy ; : [0,1] x [0,n;] X [0,n,] — R*isgiven by
fui@s P.Q =o0f + ofi(ny —1-P) + o (n — Q).
For every individual j € I,, the Y-fitness function fy ,:[0,1] X [0,n;] X [0,n;] = R* isgiven
by
fr2(q;; P,Q = wy + a}, Q; + aj;P;
and the N-fitness function fy, : [0,1] X [0,n;] X [0,n;] = R* is given by
fnz2(q; P, Q)= w) +ab, (n, -1 Q)+ ayy (n;—P).
Lemma 2.11 (Mousa et al., 2014a). Let S : I — [0, 1] be a mixed strategy. For every individual
i € I, the utility function U; : [0,1] x [0,n,] X [0,n,] — R* isgiven by

Uy (pi; P,Q) = pi fya(ps P,Q) + (1 —py) fu.(pi; P,Q).
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For every individual j € I,, the utility function U, : [0,1] % [0,n;] X [0,n,] — R* is given
by
Ux(qj; 0,Q) =4q; fr2(qj; P,Q) + (1 —q;) fn2(q;; P,Q) .

Definition 2.12 (Mousa et al., 2014a). A strategy S*: I — [0, 1] is a (mixed) Nash equilibrium, if
U;(S*) = U;(S) for every individual i € I and for every strategy S € S with the property that
S*(j) = S(j), for every individual j € I\ {i}.

Lemma 2.13 (Mousa et al., 2014a). Let S: I — [0, 1] be a mixed Nash equilibrium.
i If 0<p <1, thenx = —A4;;(P—p;) — A1,Q + H(N,N) .

Hence, if A;; # 0, then there is not a mixed Nash equilibrium with the property that 0 < p;; #
piz < 1. Furthermore, if A,, # 0, then there is not a mixed Nash equilibrium with the property

Definition 2.14 (Mousa et al., 2014a). The (14, k4, p; 15, k2, q) mixed strategic set is the set of all
strategies S : I — [0, 1] with the following properties:

() WL=#{ie€eL:p; =1} and k= #{i € I, : p; = p};

(i) Lb=#{(j€L: q =1} and ky= #{j € L= q; = q};

(iiiyn, — (L + k) =#{i €l :p; =0} and n, — (I, + k) = #{j € I, : q; = 0}.

For p,q € {0,1}, we observe that the (I, k1, p; L5, k,, q) mixed strategic set is equal to the
(l4 + pkq, 1, + qk,) pure strategic set.

Remark 2.15 (Mousa et al., 2014a). By Lemma 2.13, supposing that A;; # 0 and A4,, # 0, a

mixed strategy S is a Nash equilibrium, if S is contained in some (I, k4, p; L3, ks, q) mixed

strategic set.
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Since individuals with the same type are identical, if a mixed strategy contained in the
(L, ki, p; 1, ke, q) mixed strategic set is a Nash equilibrium, then all the strategies in

the (I, k1 ,p; 15, ko, q) mixed strategic set are Nash equilibria.

Definition 2.16 (Mousa et al., 2014a). An (I, , k1, p; 13, k2, q) mixed Nash equilibrium (set) is an
(L4, ki, p; 1y, ky, q) strategic set whose strategies are Nash equilibria. The (mixed) Nash domain
N(ly , ki, p; 15, ky, q) is the set of all pairs (x, y) for which the (1, , k1, p; 15, k5, q) Strategic set is

a mixed Nash equilibrium set.

An (1, kq,p; 1y, ko, q) strict mixed Nash equilibrium set is a mixed Nash equilibrium set that
does not contain pure strategies, i.e. (p,q) € [0,1]%\ {0,1}2. A strict mixed Nash domain

N(ly, kq,p; 1y, k5, q) is the mixed Nash domain of a strict mixed Nash equilibrium set.

Geometric approaches in constructing Tilings

In this section, we study two strategic approaches to construct Nash domains. The two
approaches are the global approach and the local approach. In the global approach, we will
construct all possible tilings using the coordinates of the influence matrix. In the local approach,
we will characterize all possible orders for the domains of the pure and mixed Nash equilibria in
tilings using the coordinates of the influence matrix too. We should remark that all Figures
displayed in Section 3 and Section 4 are all original and created by the authors themselves. In order

to proceed, we need to introduce some auxiliary and generalized results.

Theorem 3.1. The (14, 1,) strategy is a Nash Equilibrium if and only if (x,y) € N(l4, 1), where
N(ly, 1) ={(x,y):H (L, 1) < x < Hg(ly, 1) and Vp(ly, L) <y < Vy (L, 1)}

the left horizontal threshold H; (I, ;) and the right horizontal threshold Hg (14, ;) of the (I4,15)
strategy are given by

Hy(l, ) = afing + ayn, + afy — (afy + a)l; — (af; + aiDl

Hr(l,lp) = afing + ayny, — ay — (afy + aiy)l, — (af; +af) by,
the down vertical threshold V,(l;,1,) and the the upper vertical threshold Vy(l;,1,) of the
(14, 1,) strategy are given by

Vo(l, ) = adhny + ading + aj, — (ay; + ad)l, — (aj, + ad)l;
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Vo () = adhny + ading — ady — (afy + ad)l — (af, +ad) ;.

Proof. The (14, 1,) strategy is a Nash equilibrium if, and only if, the following four inequalities
hold

U (Y; L, L) 2 U(Ns L= 1,L),  Ui(Ns I, L) = U (Y L + 1,1)
and

U, (Y; 1, L) = Uy(N; Iy, L, — 1), Uy(N; gL, L) = Uyp(Y; Ll + 1)

Hence, the proof of Theorem 3.1 follows by rearranging the terms in the previous inequalities.

Hence, N(ly,1,) is the Nash Equilibrium domain of the (l;,[,) strategy (see Figure 5). Each
geometric graph in Figure 5 is called a tiling results by joining the four quadrants described in
Figures 1, 2, 3 and 4 in one geometric graph. The horizontal preferences x for individuals of type
t1 1s being the x-axis and the vertical preferences y for individuals of type t, is being the y-axis.
Each tiling indicates the way the horizontal thresholds H(Y,Y), H(Y,N), H(N,Y), H(N,N) are
ordered along the horizontal x-axis and the way the vertical thresholds V (Y, Y), V(Y,N), V(N,Y),
V(N, N) are ordered along the vertical y-axis. The order of these horizontal thresholds and vertical
thresholds gives rise to the Nash equilibria location, and thus determines the Nash domain for each
strategy. More details about the construction of these tilings will be discussed in the coming

section.

The following thresholds determine the domains of the (I, [,) disparate Nash equilibria.

Hg(ly,lz) = H(ly + 1,13), Hy(ly, 1) = Hy, (I, 1 + 1) + Ay,
Vy(ly, 1) = Vp(ly, Iz + 1), Hg(ly,lz) = He(ly, Iz + 1) + Aqp,
Vy (L, 1) = Vp(li, 1) — Az, Vp(ly, 1) = Vp(ly + 1,1;) + Ay,

He(ly,lz) = Hy(ly,lp) — Agg, Vo () =Vy b+ L1) + Ay
We observe that (see Figure 5) if A;; > 0 or A,, > 0, then there are no (4, l,) Nash Equilibria,

forevery l; € {1,...,n; —1} and [, € {1,...,n, — 1}. However, if A;; < 0 and A,, < 0, then

there are (14, 1,) Nash Equilibria, forevery l; € {1,--- ,n; — 1}and [, € {1,--- ,n, — 1}.
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Figure 5. Disparate Nash equilibria when n; = 4 and n, = 3. Left: 411 < 0,442 <0, 451 <0 and
Ay, < 0. The yellow rectangles include two pure Nash equilibria and a mixed Nash equilibrium.
Right: 441 < 0,441 > 0,431 <0 and A5, < 0. The yellow rectangles have no pure Nash equilibrium

but include a mixed Nash equilibrium.

Lemma 3.2. The Nash domains satisfy the following properties: N(nq,n,) = N(Y,Y),
N(n.,0) = N(Y,N),N(O,n,) = N(N,Y),N(0,0) = N(N,N).

Proof. We prove N(n,,n,) = N(Y,Y) and the proof for the other Nash domains follows similarly.
Substituting [; by n, and [, by n, in the horizontal and vertical thresholds stated in Theorem 3.1,
we have that

Hy(ny,np) = aiing + alang + af; — (af, +a)ng, — (af; +afdny

= —0‘)1/1(711 -1 - “11(2”2

= H(Y,Y)
and
Vp(nynz) = afon, + ajing + ajy — (a3 + ad)ng — (a5, + ady)ng
= —aphy - 1) —ajny
=V (,Y).
Hence, N(n,,n,) = N(Y,Y) and we conclude the proof. [
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3.1. Global approach. We will see that the coordinates of the influence matrix together with the
total number of individuals play a significant role to determine the Nash domains for a given
strategy. We will also denote to the Nash domains N (14, ;) by Q(l4, ;) as being referred to the
quadrants. We notify  that a pair of  thresholds (HY,V),V(Y,Y))
(respectively, (H(Y,N),V(Y,N)),(H(N,Y),V(N,Y)),(H(N,N), V(N,N))) form a corner for
the quadrant Q(Y,Y)(respectively,Q(Y,N), Q(N,Y),Q(N,N)). We summarize the global
approach by the following remark which provides a strategy for constructing all possible tilings:

Remark 3.3 (Golden Tiling). Let S; = (A;2,433)and S, = (A;1,4,1). Every tiling is
determined by a corner of quadrant and a vector of stairs (S;, S,) together with the total number of

individuals.

We now emphasize Remark 3.3 by referring to the Figures 6, 7, 8 and 9 and by ordering the
following steps:
e Connect the losangles between the corner of the quadrants Q(Y,Y), Q(Y,N), Q(N,Y) and
Q(N, N);
e Use the coordinates of the influence matrix (A4,,, A;,) to construct the left and right green
ladders boundaries of the losangles (see Figures 7 and 8);
e Use the coordinates of the influence matrix (4,4, A,4) to construct the upper and down blue
ladders boundaries of the losangles (see Figures 6 and 9);
e We repeat the second and third items in a similar fashion, but with different locations;
e The ladders intersect the losangles in the points upper-down

J2412 .
— for =0,1,...,n,;
ny ]2 2

e The ladders intersect the losangles in the points left-right

ny fOI‘ J1 = 0,1,...,1’11.
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\
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Figure 5. Left: Left green boundaries shift 1: The rule:
dimension of the right corner and come in from outside of the horizontal boundaries in the horizontal
dimension of the left corner. Right: Left green boundaries shift 2: The rule: Go out from the

boundaries in the horizontal dimension of the left corner and come in from inside the horizontal

‘AWZ
Q(NIY) 'AZZ

"\ Right corner
\ Down blue
X Shifts

Shifts
Left corner

£ losangle

Q(N,N) \Upperblue

boundaries in the horizontal dimension of the right corner.

We remark that shifts in the left green ladders boundaries of the losangles are different from right
green ladders boundaries of the losangles; shifts in the upper blue ladders boundaries of the
losangles are different from down blue ladders boundaries of the losangles; and down blue stars

start in blue stars and they end in the green circles, but upper blue stars start in the green circles

and end in the blue stars.
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AzzL iz
A Qfy) Ay Right corner Q(yy)
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Left corner — x—¢ | |  BVUES
- osangle /
Down blue Shifts . \\
_ losangle Shifts Down blue
Shifts el Left corner Shifts
o //Upperblue h o |
. L,/’/ :".l %*
"//' /,/"
./"/
Right corner ~ Q(YN) Upper blue Q(Y,N)

Figure 6. Left: Right green boundaries shift 1: The rule: Go in the boundaries in the horizontal
dimension of the left corner and come in from outside of the horizontal boundaries in the horizontal
dimension of the right corner. Right: Right green boundaries shift 2: The rule: Go out from the
boundaries in the horizontal dimension of the right corner and come in from inside the horizontal

boundaries in the horizontal dimension of the left corner.

We see that there are eight different boundaries kind of shifts: left green boundaries shift 1, left
green boundaries shift 2, right green boundaries shift 1, right green boundaries shift 2, down blue
boundaries shift 1, down blue boundaries shift 2, upper blue boundaries shift 1 and upper blue

boundaries shift 2.

Upper corner
Q(N,Y
i Shifts Shifts ar,v)
9B a(y,v) a8
/ Q(NY) O
N Left green
/ 3 AN
Right green " Uppercorner
Shifts /=7y ‘ LN
: Right green shifts  losangle

losangle  Leftgreen  Lower corner A

11
_ANI Lower corner A t_'

'AH

Figure 7. Left: Down blue boundaries shift 1: The rule: Go out of the boundaries in the vertical

dimension of the upper corner and come in from inside the vertical boundaries in the vertical
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dimension of the lower corner. Right: Down blue boundaries shift 2: The rule: Go in the boundaries
in the vertical dimension of the lower corner and come in from outside the vertical boundaries in the

vertical dimension of the upper corner.

Upper corner

_A”I . ['An 2 Upper corner
. A1
Right gre‘ekn Shifts -An Shifts Left green
) Left green Lower corner j
y
;  / Lower corner Right green |, l
Shifts ‘ Shifts
Q(N,N) Q(Y, N)
losangle 1) Q(N,N) losangle Q(Y, N)

Figure 8. Left: Upper blue boundaries shift 1: The rule: Go in of the boundaries in the vertical
dimension of the upper corner and come in from outside the vertical boundaries in the vertical
dimension of the lower corner. Right: Upper blue boundaries shift 2: The rule: Go out the boundaries
in the vertical dimension of the lower corner and come in from inside the vertical boundaries in the

vertical dimension of the upper corner.

Recall that O is the set of all possible strategic occupation vectors. Let the horizontal and vertical
set of strategies be given, respectively, by

Oy = {(0,1)} U {(m, )} and Oy = {({1,0} U {(l1,n2)}
foreveryl; € {0,1,--- ,ny}andl, € {0,1,- ,n,}.

The following theorem determines the conditions that guarantee the existence of a strictly mixed

Nash equilibrium for a given tiling.

Theorem 3.4. Given an influence matrix A and a point of stairs S = (S;,S,). The corresponding

tiling T (4, S) has the following properties:
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(i) if A;,A,; > 0, then there is a strictly mixed strategies only in the Nash equilibria
domain N (14, 1,) for every pure strategy (l4,1,) € O\{Oy U Oy };

(i) if A;,A,; < 0, then there is a strictly mixed strategies only outside the Nash equilibria
domain N (13, l,) for every pure strategy (l4,1,) € O\{Oy U Oy };

(iii)  if A;,A,; = 0, then there are no strictly mixed strategies for every pure strategy
(4, 1) €o0.

Proof. By Contradiction. We proof case (i) and the proof of cases (ii)—(iii) follows similarly.
Assume that there is a strictly mixed Nash equilibrium strategy
S:1 - 1[0,1]

in the Nash equilibria domain N(l;,[,) for some occupation vector (l;,1,) € {Oy U Oy }.
Note that A;,A4,; > 0 implies that either A;, > 0 and A,; > 0 (individuals of a certain type
affect positively the other type of individuals to chair a particular decision) or A;, < 0 and
A ,; < 0 (individuals of a certain type affect negatively the other type of individuals to chair
a particular decision). If N(l;,l;) = N(0,0),thenp; = q; = 0 foralli = 0,1, ,n; and
j = 0,1,---,n, which contradicts the fact that S: I — [0,1] is a strictly mixed Nash
equilibrium strategy. Similarly, if N(l;,l;) = N(ny,ny), then p;=q; = 1 for all i =
0,1,--,n; and j = 0,1,--- ,n, which contradicts the fact that S : I — [0,1] is a strictly
mixed Nash equilibrium strategy. If N(l4,1,) = N(0,1,) (resp. N(l4,l;) = N(l;,0)), then
p;=0 forall i =0,1,---,n; (resp. g; = 0 for all j = 0,1,--,n,) which gives a

contradiction too. n

In Figure 10, we show an example of two rotated tilings in which the horizontal thresholds
H(Y,Y),H(Y,N),H(N,Y),H(N, N) are ordered along the horizontal x-axis and the vertical
thresholds V(Y,Y),V(Y,N),V(N,Y),V(N,N) are ordered along the vertical y-axis. The
influence matrix for the left tiling and the influence matrix for the right tiling are, respectively,

given by

a=(33 ) aa a=(F 0D
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(02) |(12) FQ(y, Y) (2,2) (0,2) any | 1,2 | (2,2)
(2,1) (0,1)
Q(Y,N) ’ ‘Q(N,N)
(1,1) (1,1)
QiNY) Q(y,y)
(0,2) (2,1)
(0,0) QNN) | (1,0) | (2,0) (0,0) | (1,0 | QiN) (2,0

Figure 9. Pure and mixed Nash equilibria.

Hence, small changes in the coordinates of the influence matrix can create a different tiling. In
(Mousa et al., 2011a), it was shown that there are 289 combinatorial classes of decision tilings,

described by the decision Bussola, which demonstrate the high complexity of making decision.

3.2. Local Approach. The local approach uses the signs of the coordinates of the influence
matrix to determine the domains of the pure and mixed strategies in all tilings (see Figure 11).
We observe that changing the signs of the pairs (4,1, A;;) and (445, A,,) imply different orders
for the pure strategies (Iy,1,). Forall i,j € {1,2}, let
Ej= —A;.
Let us define the horizontal axis by E;, and the vertical axis by E,;. The sign of the pair
(E1, E51) determines a certain order of pure strategies (I, [,). Note that there are four possible
orders for the pure strategies that are not located along any axis which are given by small white

rectangles in Figure 11.
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Figure 10. Rotating pure Nash domains using the local approach.

We study the rotation in the pure Nash domains. Given the location of the pure strategies in
the small white rectangles, We observe the following: If the signs of the coordinates
(E1z,E5q) is (+,4), then the pure strategies are rotated to make new ordering given by the

small red rectangles that appear in Figure 12.
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Figure 11. Rotating the pure strategies when the signs of (E13, E51) is (+, +).

The new order of the pure strategies moves to the small red rectangles.
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If the signs of the coordinates (E;,, E,4) is (+, —), then the pure strategies are rotated to make

new ordering given by the small orange rectangles appear in Figure 13.
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Figure 12: Rotating the pure strategies when the signs of (E13, E51) is (+, —).

The new order of the pure strategies moves to the small orange rectangles.

If the signs of the coordinates (E;,, E;1) is (—, +), then the pure strategies are rotated to make

new ordering given by the small green rectangles appear in Figure 14.
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Figure 13. Rotating the pure strategies when the signs of (Eq13, E21) is (—, +).

The new order of the pure strategies moves to the small green rectangles.
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If the signs of the coordinates (E;,, E5;) is (—, —), then the rotated to make new ordering given

by pure strategies are the small blue rectangles appear in Figure 15.
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Figure 14. Rotating the pure strategies when the signs of (E43, Eq) is (—, —).

The new order of the pure strategies moves to the small blue rectangles.

Mixed strategies in local approach

We study geometrically two cases where mixed strategies co-exist. We present the first case
in section 4.1, where no intersection between the pure strategies occurs; the second case will
be introduced in section 4.2, where an intersection between the pure strategies occurs.

No intersections between pure the strategies

Without loss of generality, we will consider the case where the signs of (E,,, E,,) is (+,+) and
focus on the mixed strategies that occurs in the corresponding Figure 12. The other three cases
follow in a similar way. Recall that p € [0, 1] is the probability of an individual of type t;
makes decision Y and g € [0, 1] is the probability of an individual of type t, makes decision
Y.
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Theorem 4.1. Consider the case where (E,,, E,;) is (+,4) . Then there is a mixed strategy
(l4 +p, 1, + q) with

q1

P=—FTF—
|[A211% + |Aq1 |2

and
q2

q=FTF—
VIAz|? + Az

foreveryl < l; < n; —1land1l < [, < n, — 1, where g; and g, are nonnegative real

values.

Proof. Note that if the mixed strategies (I; + p,l, + q) are located along the horizontal and

vertical axes (see the black rectangles in Figure 16), then they become pure and given by

(lliﬂz + A“).

2 I
l4z21] [A12]

Considering the case where (E,,, E,;) is (+,+). Thus, p and g may have now real values
instated of being natural and their values are derived by applying the Pythagorean Theorem
among the three sides of right triangles given in Figure 16, which ends the proof.
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g

AN

E(l1, lz+1)

Figure 15. (I; + p, I, + q) is the mixed strategy when (Eq, E2q) is (+,+).

Bifurcations between pure strategies

In this section, we study geometrically the bifurcations between the pure strategies and see the
signs effect of the coordinates of the influence matrix. In Figures 17, 19, 20 and 18, we show
all possible bifurcations between the pure strategies that may occur in the corresponding
Figures 12, 13, 14 and 15, respectively.

In Figure 17, we show the bifurcations between the pure strategies when (Ey,, E;;) = (+, +).
The blue, green and yellow rectangles represent the black rectangles (pure strategies) on the
horizontal, vertical and diagonal axis in Figure 12, respectively. The red rectangles represent
the red rectangles in Figure 12 and they describe the shifts in the black ones. We observe that

there are three red overlaps between, where the mixed strategies may occur.
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E21

Figure 16. The bifurcations between the pure strategies when(E;, E;1) = (+,+).

In Figure 18, we show the bifurcations between the pure strategies when(E,,, E;;) = (—, —).
The blue, green and yellow rectangles represent the black rectangles (pure strategies) on the
horizontal, vertical and diagonal axis in Figure 15, respectively. The red rectangles represent
the blue rectangles in Figure 15 and they describe the shifts in the black ones. We observe that

there are three red overlaps between, where the mixed strategies may occur.

- S S I E1z

Figure 17. The bifurcations between the pure strategies when(Eq3, E21) = (—, —).
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In Figure 19, we show the bifurcations between the pure strategies when (E,,, E,;) =
(+,-)). The blue, green and yellow rectangles represent the black rectangles (pure strategies)
on the horizontal, vertical and diagonal axis in Figure 15, respectively. The red rectangles
represent the orange rectangles in Figure 13 and they describe the shifts in the black ones. We

observe that there are no overlaps between.

Ex1

Figure 18. The bifurcations between the pure strategies when(E;, E;1) = (+,—).

In Figure 20, we show the bifurcations between the pure strategies when (E,,, E,;) = (—, +).
The blue, green and yellow rectangles represent the black rectangles (pure strategies) on the
horizontal, vertical and diagonal axis in Figure 14, respectively. The red rectangles represent
the green rectangles in Figure 14 and they describe the shifts in the black ones. We observe that

there are no overlaps between.
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E21
—

Figure 19. The bifurcations between the pure strategies when(E3, E;1) = (—,+).

Conclusions

Resorting to the Dichotomous decision model presented in (Mousa et al., 2014a), two geometric
approaches have been studied to construct all possible decisions tilings in which pure and mixed
Nash equilibria co-exist and change with the relative decision preferences of the individuals.
We have characterized all possible Nash domains for pure and mixed strategies and discussed
the dependence of Nash equilibria on the parameters of the model. We have seen how the
coordinates of the influence matrix and the total number of individuals can alter the order of
the horizontal and vertical thresholds which allow the occurrence of bifurcations with and
without overlaps between the pure strategies.
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