
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, Apr. 2018 1655

Copyright ⓒ 2018 KSII

http://doi.org/10.3837/tiis.2018.04.014 ISSN : 1976-7277

Scheduling of Concurrent Transactions in
Broadcasting Environment

Ahmad Al-Qerem

1
, Ala Hamarsheh

2
, Yaser A. Al-Lahham

3
 and Mujahed Eleyat

4

1Department of CIS, Zarqa University, Zarqa, Jordan
[e-mail: ahmad_qerm@zu.edu.jo]

2Faculty of Engineering and Information Technology, Arab American University, Jenin, Palestine
[e-mail: ala.hamarsheh@aauj.edu, alaauj@gmail.com]

3Department of Computer Science, Zarqa University, Zarqa, Jordan
[e-mail: yasirlhm@zu.edu.jo]

4Faculty of Engineering and Information Technology, Arab American University, Jenin, Palestine

[e-mail: mujahed.eleyat@aauj.edu]
*Corresponding author: Ala Hamarsheh

Received June 3, 2017; revised October 2, 2017; accepted December 4, 2017;
published April 30, 2018

Abstract

Mobile computing environment is subject to the constraints of bounded network bandwidth,

frequently encountered disconnections, insufficient battery power, and system asymmetry. To

meet these constraints and to gain high scalability, data broadcasting has been proposed on
data transmission techniques. However, updates made to the database in any broadcast cycle

are deferred to the next cycle in order to appear to mobile clients with lower data currency. The

main goal of this paper is to enhance the transaction performance processing and database
currency. The main approach involves decomposing the main broadcast cycle into a number of

sub-cycles, where data items are broadcasted as they were originally sequenced in the main

cycle while appearing in the most current versions. A concurrency control method

AOCCRBSC is proposed to cope well with the cycle decomposition. The proposed method
exploits predeclaration and adapts the AOCCRB method by customizing prefetching, back-off,

and partial backward and forward validation techniques. As a result, more than one of the

conflicting transactions is allowed to commit at the server in the same broadcast cycle which
empowers the processing of both update and read-only transactions and improves data

currency.

Keywords: mobile computing, data broadcasting, concurrency control

1656 Ahmad Al-Qerem et al.: Scheduling of Concurrent Transactions in Broadcasting Environment

1. Introduction

Mobile computing has become remarkably used by a wide range of users; as a consequence

of the vast improvement in computer hardware and wireless network technologies. This
environment encourages many providers to offer services to an unbounded number of users

who are equipped with portable computing devices running on battery power regardless of

time and distance limitations.

Existing mobile technologies suffer from bounded network bandwidth, frequently
encountered disconnections, insufficient battery power, and system asymmetry constraints. To
handle such limitations, wireless data broadcasting has been applied on data transmission

techniques by many research efforts [1][2][3][4][5][6].

Generally, in mobile client-server architecture, servers respond to users’ requests while
requests are being transmitted, mobile clients consume more of their power than that when

they receive the response in addition to the consumption of the scarce uplink bandwidth. Since
the number of requests from any given client is not bounded as of the case of the number of the

requesting clients, the server may be heavily loaded resulting in an extremely increased

response time. However, wireless data broadcasting models such as "Broadcast Disks Model",
which was proposed by Acharya [1], which can overcome these problems. In this model, the

server constantly broadcasts the entire database via one or more wireless communication

channels. Data items of interest to any client are retrieved by that client when they come up on
the channel. So, clients have to wait for the required items until they are in the channel. This

system identifies the channel as a shared data repository (disk); where data items are accessed

sequentially. As broadcasting any item can satisfy all the outstanding requests for that item

simultaneously, whatever the number of the outstanding requests is, the access time of mobile
clients is not affected. Wireless data broadcasting is impressively scalable; that’s why it is

widely used to develop several mobile application systems, like: auctions, electronic bidding,

stock trading, weather information and traffic information broadcasts [7].

Read-only transactions constitute the majority in these applications while update

transactions are infrequent. For example, stock trading involves a small group of stock
purchasing or bidding, which represents update transactions in the application. Besides,

relatively many more brokers, who just monitor stock prices, issue read-only transactions. In a

read-only condition, there is no concerns about the consistency among data items, while in the
presence of update transactions, consistency is most likely to be violated [6][8][9][10].

Reasonably, concurrency control schemes are required for mobile transactions to preserve
data currency and consistency. Nevertheless, a direct application of traditional concurrency

control schemes to mobile transaction processing is not considered an option because they do

not suit the limitations of this environment [8]. In conventional methods, the communications
between mobile clients and the server comprise exchanging a large number of messages,

which in return consume much battery power of mobile clients and the limited uplink

bandwidth [11], [12][13].

Moreover, the unbounded number of transactions coming from an also unbounded number

of clients can easily overload or interrupt servers. Consequently, traditional concurrency
control schemes, based on locking and time stamping, are not suitable for mobile transaction

processing [7].

This paper proposes a new data, which addresses a technique that enhances the concurrent
usage of a wireless database transmission. The new technique decomposes the cycle into
subsycles allowing more than one conflicting transaction to be committed in a single global

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1657

cycle, and that is because an aborted transaction of one subcyle is shifted to resume execution

at the next subcycle. The rest of the paper is organized as follows.

2. Related Work

Most of research efforts in wireless broadcasting circumstances concurrency control revolved
around mobile transactions with uniform data access patterns [15], [16], [6], [8], [17], [18], [9],

[10]. For example, Lee [8] proposed a method, which is called "Forward and Backward

Optimistic Concurrency Control" denoted by "FBOCC", based on the optimistic concurrency
control method.

Forward validation is assigned for update transactions, while partial backward validation is
for read-only transactions in FBOCC [8]. Nevertheless, just like all other concurrency control

methods for wireless broadcast environments; FBOCC concentrates on mobile transactions

with uniform data access patterns. When mobile clients run update transactions with
non-uniform data access patterns, all those methods show a poor performance because of the

frequent aborts and restarts in the final validation phase, which is a result of the conflict caused

by updating the same data items. Accordingly, this problem wastes both the uplink and the
downlink bandwidth as well, which in turn wastefully consumes more of the battery power of

mobile clients. Later mobile concurrency control methods did not exploit caches of mobile

clients. Caches at mobile clients decrease their response time, because storing data items in the

mobile cache enables them to be accessed locally when the relevant transactions are resumed.

For the sake of making the system more responsive, many proposals were deployed.
Examples of these proposals are investigated, Lee [17][18] proposed a predeclaration

technique, such that the response time of restarting mobile transactions is decreased by

prefetching the data items before that transaction starts. Prefetching can be performed either

through declaring the read data set of a transaction when it starts, or searching the transaction
for all the potentially required data items before it starts. Nevertheless, the first method is

impractical, while the second used more resources are consumed since more items are read

more than what is really needed [7].

Multiversion data broadcast technique [19] maintains and broadcasts multiple versions for
each item instead of broadcasting the last committed version only. The main purpose is to

enhance the commitment probability. A new version (holding the identifier of the desired

cycle) is assigned to each data item at the beginning of each cycle. The clients are supposed to

access the different data items of the same version. The multiversion broadcast method neither
supports update transactions nor real time conditions. Likewise, the size of the broadcast cycle

is the added item versions, which, in turn, increase the response time for mobile transactions.

Adaptive optimistic concurrency control with random back-off (AOCCRB) method was
proposed on the basis of the optimistic concurrency control scheme. Optimistic concurrency

control methods allow transactions to run their operations and defer the validation phase
assuming that conflicts hopefully will never occur [7]. The validation is carried out in two

modes, forward validation and backward validation [12]. In backward validation, the

transaction checks the data items stored in its local buffer for reading purposes, against the
control information (CI) attached at the beginning of each broadcast cycle. If a conflict is

found, the validating transaction aborts locally. Hence, the control information of a cycle holds

all the data items that were updated at the server by committed transactions in the previous
cycle [7]. Forward validation involves only update transactions, when the validating

transaction submits the set of data items two steps are incorporated. In the first step, the server

1658 Ahmad Al-Qerem et al.: Scheduling of Concurrent Transactions in Broadcasting Environment

carries out a backward validation against the transactions that were committed since the start

of the current cycle and before the data set is submitted. If the validating transaction does not
pass the first step, it aborts. In the second step, the validation is carried out against the

currently running transactions. If conflictions are detected, they will be resolved by aborting

the currently conflict running transactions. Reasonably, aborting running transactions is

preferable because of the relatively high loss of sacrificing the validating transaction [7].

To improve the response time of mobile transactions, AOCCRB applies data prefetching
technique based on the access invariance [20]. Access invariance denotes that a restarting

transaction heads for requiring the same set of data items used in the previous failed execution.

A mobile client maintains a list of the data items accessed when it is running a transaction, so
when the transaction is aborted and restarted, the data list is prefetched into the clients' cache,

enhancing the response time of mobile transactions by reducing the access time for the needed

data items. As mobile update transactions have non-uniform data access patterns, they are

potentially repeatedly aborted and restart because of the update conflicts on hot data items,
wastefully consuming resources of mobile clients [7]. AOCCRB supports mobile and server

update transactions, real-time environment, and implements serializability as a correctness

criterion. However, only one transaction, among all the conflicting transactions, is allowed to
commit in any cycle. Consequently, the waiting time for restarting update transactions could

be significantly long due to the size of the cycle. Furthermore, the availability of the updated

items in any cycle is delayed to the next cycle.

STUBcast proposed by Huang in [21], introduced two novel correctness criteria, "single
serializability" and "local serializability" denoted by "SS"and "LS", respectively. Single
serializability asserts that "all update transactions and any single read-only transaction, are

serializable". Whilst, local serializability requires "all the update transactions in the system

and all read-only transactions at one client side to be serializable". SS and LS are weaker but
easier to achieve than global serializability, and they do guarantee the consistency and

correctness at the server database. In STUBcast broadcast operations are divided into "primary

broadcast" and "update broadcast" denoted by "pcast" and "ucast", respectively. The pcast

broadcasts all the data items with their versions prior to the beginning of dissemination, while
ucast broadcasts the new versions of the updated data items by inserting them into the ongoing

pcast whenever a transaction is newly committed. The protocol consists of three components,

"Client Side Read only Serialization Protocol" denoted by "RSP", "Client Side Update
Tracking and Verification Protocol" denoted by "UTVP", and "Server Side Verification

Protocol" dented by "SVP".

STUBcast supports only mobile client update transactions, and does not support real-time
environment, it uses single and local serializability (which is weaker than serializability) as a

correctness criterion. Furthermore, the access efficiency is affected by the extended length of
the cycle, besides the high overhead from using timestamps and the complexity of

computations.

3. System Model

This section presents the model of the proposed system, which includes the following items:

system architecture, structure and formation of the broadcast, data scheduling, control
information creation and placement, and data binding (i.e. when data items are extracted from

the database). These are all customized to achieve the desired targets. Moreover, some new

assumptions and modified constraints will be presented.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1659

3.1 Subcycle Formation Procedure

The ordinary broadcast cycle approach broadcasts a subset of the database (or the whole

database) as a transmission cycle. The broadcast subset consists of a subset of a database that

includes all the data items aimed for dissemination. Broadcast cycle items are disseminated
through a broadcasting channel in the form of a sequential data stream. The proposed model

creates the conventional broadcast cycle, in the form of a set of data items only, then it splits it

into smaller intervals called "sub-cycles". Creating AOCCRBSC adaptive cycle is carried out
as follows:

1. All cycles are of the same fixed size (i.e. each cycle contains the same number of items), as

in Fig. 1(a).

 Ci

d1 d2 dm

Fig. 1(a). Original Broadcast Cycle

 C
n

i

d1 d2 dp dp+1 dm

Sub-cycle SC
n

i,1 Sub-cycle SC
n

i,2. Sub-cycle SC
n

i,n.

Fig. 1(b). Decomposed broadcast cycle

2. Sub-cycles are generated by splitting the cycle into none overlapping equally sized
partitions that contain all the data items included in the original cycle, as shown in Fig.

1(b). Throughout this model the notation: C
n

i refers to the ith cycle that consists of 'n'

sub-cycles. Let Dm= {d1, d2, …, dm}, be the set of data items included in C
n

i. As sub-
cycles are equally sized and none overlapping, 'n' is a divisor of 'm' and SC

n
i,j is the jth

sub-cycle in the ith cycle. So given that SC
n

i,j ={dp}, where: dp ϵ D, implies that ((j-

1)*(m/n)+1) < p <= (j*m/n) where 'p' is the sequence of the data item 'd' in the Dm (the

same as in the original cycle before decomposition), and j ϵ {1, 2, …, n}. The
pseudocode for cycle decomposition is shown in Fig. 2.

3. All cycles consist of the same number of sub-cycles.

4. The data items are extracted from the database dynamically. In other words, when the
server starts for the first time, the first generated broadcast cycle consists only the

identifiers of the data items selected for dissemination, the cycle is partitioned into

subcycles. When it is time to start extracting data items from the database, only the items
of the first sub-cycle are extracted, other items are postponed until the time of their

dedicated subcycle. The server repeats these steps for all of the subsequent cycles.

1660 Ahmad Al-Qerem et al.: Scheduling of Concurrent Transactions in Broadcasting Environment

CycleDecompse(D, n)

{

for j = 1 to n

 for p = ((j - 1) * (m / n) + 1) to ((j * m / n))

DDj = DDj + dp;

 endfor

endfor

}

\\D: the set of data items to be used to generate the

adaptive cycle

\\m : the number of items included in D

\\dp : the data item with sequence number 'p' in D

\\n : the number of sub-cycles desired

\\DDj : the jth division of D

Fig. 2. Cycle Decomposition

5. Indexing of the data items in a cycle is distributed over its sub-cycles so that each data

item in the decomposed cycle will be in the same order it appeared in the original cycle.

The index is attached at the beginning of each sub-cycle as shown in Fig. 3. The index of
each sub-cycle contains: the id of the data item, paired with the time when it will appear,

the id of all sub-cycles it will appear in, paired with the subcycle start. And finally, the id

of the next cycle paired with its start time. Time is measured relative to the starting time
of the sub-cycle where the index is attached, for example; suppose that the pairs:

(Ci+1,100), (SC
n

i,j+1,21) and (dk,15) be a subset of information in the index of the current

sub-cycle "SC
n

i,j". Each pair is interpreted as follows: the first, indicates that the i
th
 cycle

Ci will start after 100 time units from the time that SC
n

i,j has started. The second, tells

that the sub-cycle number (j+1) in the ith cycle (hence, the current cycle) will appear

after 21 time units also from the time that SC
n

i,j has started. And the last, shows that the

k
th
 data item dk will appear after 15 time units also from the time that SC

n
i,j has started.

 C
n

i

Index

SCn
i,1

d1 dp
Index

SCn
i,2

dp+1

 dm
Index

SCn
i+1,1

Sub-cycle SC
n

i,1 Sub-cycle SC
n

i,2. Sub-cycle SC
n

i,n.

Fig. 3. Decomposed broadcast cycle Cn
i with index

6. In the ordinary cycle, control data is cached at the beginning of each new cycle. Control

information of a cycle includes all the data items that were updated at the server in the
previous cycle. Control information is used to enable the running mobile transactions to

detect the read/write conflicts with the committed transactions recorded on the server in

the previous cycle, so they abort early saving valuable resources. Control information

can be used to detect these conflicts coming from the previous sub-cycle, such that
control information at the beginning of each sub-cycle includes all the data items that

were updated at the server in the last sub-cycle, as shown in Fig. 4. Consequently,

running mobile transactions have to suspend execution at the beginning of every new
sub-cycle to catch the control information, for validation.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1661

CI

(SCn
i,1)

Index

(SCn
i,1)

d1 dp
CI

SCn
i,2

Index

SCn
i,2

dp+1

 dm

Sub-cycle SC
n

i,1 Sub-cycle SC
n

i,2 Sub-cycle SC
n

i,n.

Fig. 4. Decomposed broadcast cycle Cn
i with index and Control Information (CI)

As shown in Fig. 4, transactions do not have to wait until the length of the reminder of

cycle to catch CI and execute the validation, instead it waits for the rest of current subcycle,

giving a chance to more transactions to be committed, and conflicts may be detected earlier.
Number of sub-cycles generated has a big impact on the performance, so it should be chosen

carefully. Higher number of sub-cycles generated, the faster CIs appear. Consequently,

running transactions must tune-in more often in a shorter time, since the tuning time may
dramatically increase. For example, if more subcycles are used, the time spent in doze mode

before tuning-in should be considered when determining the number of sub-cycles in order

to not missing any control information (CI) by transactions.

3.2 Adaptive Optimistic Concurrency Control at Sub-Cycle Level (AOCCRBSC)

Broadcast cycle is a subset of a consistent state of the database, so only transactions that gain

all its data items, and finish execution within the same cycle are allowed to commit, while
the rest, are aborted and restarted later at the beginning of the next cycle. Consequently,

transactions are forced to abort until insuring that data items collected in different broadcast

cycles are members of a consistent state of the database.

Backward validation technique solves the problem of uncertainty and discovers

inconsistency by allowing running transactions to span multiple cycles detecting the

inconsistency of the data items they read so far, by invalidating data items in its read set at

the beginning of every broadcast cycle against all the data items updated by the transactions
that were committed during the last cycle.

Unfortunately, once a conflict is detected, not only the transaction has to restart, but also

has to read the entire data items it already read, including none conflicting items. This
situation needs more resources since the transaction is forced to read data items from air

instead of reading it from its own cache. To solve this problem, a restarting transaction

should re-read only the inconsistent data items from the broadcast cycle, and caching the

consistent items. This is what prefetching stands for.

Combining prefetching and backward validation will save mobile client's resources, since

the number of successfully committed transactions is increased, and the number of data

items read from the air is decreased.

The server has to validate update transactions for commit, or to do what is called "Forward

Validation". Forward validation completes the work done by the backward validation at the

mobile client. In forward validation, the intending to validate transaction is checked out

against all active transactions during the current sub-cycle. However, aborting the validating
transaction is more expensive than aborting the currently running transactions, the resolution

of any potential conflicts is carried out by aborting the currently conflict running

transactions.

Basically, random back-off decreases the number of restarting transactions at the

beginning of a new cycle, by trying to decrease the number of aborts. Assume that there are

k transactions conflicting because of data item 'x'. When any of them runs the forward

validation, the rest k-1 transactions are aborted and restarted at the next cycle. Thus, the

1662 Ahmad Al-Qerem et al.: Scheduling of Concurrent Transactions in Broadcasting Environment

opportunity for any of the transactions to commit is (1/k). This case is repeated for at least k-

1 cycles, because new competitors may appear in next cycles. The basic idea of the random
back-off is that the server keeps track of the number of transactions that aborted because of

their intentions to update a data item, which is called the contention degree of the data item

'x'. Including this parameter in the control data, and transmit it to the mobile client enables it

to postpone aborted transactions of low committing possibility (i.e. with the high contention
degree) to the start of a later cycle.

Consequently, combining all of these techniques (prefetching, backward validation,

forward validation, and random back-off) will be more significant. However, when broadcast
cycles are too long, some aborted transactions will suffer from long delay. If transactions have

time-outs, as it is so often the case, some transaction will not survive. Dead transactions have

to be re-submitted for execution, which makes the mobile clients to hold for longer time.

Therefore, degrading the data currency because the server will spend more than one cycle to
validate data items to consistently appear in the next cycle.

Allowing a subset of data items to be updated at the server during the current cycle, data

items will always appear in their most updated versions (i.e. increasing data currency),
allowing more than one transaction to update the same data item during one cycle (i.e.

increasing transaction concurrency), at the same time reducing resource consumption by

decreasing number of data items read from air by restarted transactions, while applying the
undisputed correctness criterion (i.e. the serializability), so that the consistency is still

preserved at once. This can be assumed to be a sensational achievement, which is the

contribution of this work.

3.2.1 Partial Backward Validation at Sub-Cycle Level at Mobile Client

This section presents an explanation of how transactions work at mobile client side in the

proposed method; mobile transactions are processed throughout the following steps:

1. The local cache of a mobile transaction is utilized so that any read operation checks for the

existence of the desired data item before trying to fetch it from air. In addition, all write
operations initially take place in the local cache until after the transactions finish execution,

that they are submitted to the server for validation. Furthermore, a restarting transaction

predeclares the data items to be read from air again, such that data items are ordered
according to its sequence in the channel instead of the time they were required in the

execution.

2. Whenever a new sub-cycle begins, all transactions suspend execution and perform a partial
backward validation using the broadcasted control information. The transactions which

succeed the validation resume the execution, other failure transactions are aborted. The time,
when an aborted mobile transaction restarts, depends on the type of the transaction (i.e. read-

only transactions immediately restarted, while update transactions wait for the back-off time

before restarting.

3. When a read-only transaction reaches its end of transaction point (EOT) before a new
broadcast sub-cycle, it locally commits; otherwise, if it is an update transaction, it goes

through the forward validation procedure at the server.

Step1 extends the behavior of the existing optimistic concurrency control method by
enhancing the utilization of the local cache of restarting transactions. In addition to

prefetching, which already exists, a restarting transaction exploits cache for predeclaration
by sorting the unprefetched data items by their index in order to catch each of them from its

earliest occurrence.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1663

In step 2, instead of waiting the next cycle, running mobile transactions (both read-only and
update transactions) suspend execution to catch the CI, which contains only the items that
were updated during the previous sub-cycle, to run a partial backward validation.

In step 3, as read-only transaction locally commit, the updated data items will be available in
the channel immediately at the first sub-cycle they are scheduled to before the beginning of

the whole cycle.

The Algorithm for Partial Backward Validation at Sub-Cycle Level

Fig. 5 represents partial backward validation at sub-cycle level. When the j
th
 sub-cycle of

the i
th
 cycle, which consists of n sub-cycles, denoted by "SC

n
i,j" starts, the mobile transaction

'Tv' suspends running to go through the partial backward validation. The validating

transaction detects the channel to catch the control information broadcasted at the beginning

of the sub-cycle. Afterwards, it compares the set of data items in the captured control

information against the cached items at Tv for reading purposes creating its "ReadSet(Tv)".
//Tv: mobile transaction.

//CI(SCi,j): the set of data items that was updated during the previous broadcast //sub-cycle 'SCx,y'.

//ReadSet(Tv): the read data set of the transaction 'Tv'

//PrefetchingSet(Tv): the set of data items to be prefetched by the transaction 'Tv', //i.e., to be read from the

local cache.

//UnPrefetchSet(Tv): the set of data items to be unprefetched by Tv, i.e., to be read //from the air again.

PartialBackwardValidationSC(Tv, SCn
i,j)

{

if(ReadSet(Tv) ≠ Ø)
 forall 'x' ϵ CI(SCn

i,j)

 forall 'y' ϵ ReadSet(Tv)

 if (x.id == y.id) then

 UnPrefetchSet(Tv) = UnPrefetchSet(Tv) +y;

 endif

 endfor

 endfor

endif

if(j>1) then

 C = SCn
i,j-1;

else

 C = SCn
i-1,n;

endif

if(UnPrefetchSet(Tv) ≠ Ø) then

 PrefetchingSet(Tv) = PrefetchingSet(Tv) U (ReadSet(Tv) -

 UnPrefetchSet(Tv));

 if (Tv is update transaction) then

 BackoffAndRestartSC(Tv, C);

 else

 restart(Tv);

 endif

else

 continue;
 when Tv finishes, call LastPartialBackwardValidationSC(Tv, SCn

i,j);

endif

}

Fig. 5. Partial Backward Validation at Sub-Cycle level

1664 Ahmad Al-Qerem et al.: Scheduling of Concurrent Transactions in Broadcasting Environment

Unless there are no common items resulting from this comparison, Tv aborts locally due to

confliction with a committed transaction in a previous sub-cycle, otherwise it resumes
running.

Before the transaction 'Tv' is aborted, it extracts the non-conflicting data items from the set
of data items included in ReadSet(Tv), adding them to the prefetching set denoted by

"PrefetchingSet(Tv)". Tv will reread the prefetched data items, when it restarts, locally from

its cache. Furthermore, conflicting data items are also extracted, and included in another set
denoted by "UnPrefetchSet(Tv)". Tv will reread the unprefetched data items from air again,

sorting them according to the arrival time (index), and storing them in its local cache as soon

as they show up in the air.

If 'Tv' is an update transaction, the abortion will trigger algorithm2 which is used to

determine the back-off time that Tv should spend waiting before restarting. Otherwise, if 'Tv'
is a read-only transaction, it is just restarted normally.

//Tv: mobile transaction.

//CI(SCi,j): the set of data items that was updated during the previous broadcast sub-cycle 'SCx,y'.

//ReadSet(Tv): the read data set of the transaction'Tv'

//WriteSet(Tv): the current write data set of the transaction 'Tv'

//PrefetchingSet(Tv): the set of data items to be prefetched by the transaction 'Tv', //i.e., to be read from

the local cache.

//UnPrefetchSet(Tv): the set of data items to be unprefetched by Tv, i.e., to be read // again from air.

//ContentionDegree[x]: the contention degree of the data item 'x'

BackoffAndRestartSC(Tv, SCn
i,j){

abort(Tv);

MaxContentionDegree = max(ContentionDegree[x]) where x ϵ ReadSet(Tv);

if(MaxContentionDegree>1) then

MaxContentionDegree = MaxContentionDegree – 2;

endif

Pick a random number between 0 and (MaxContentionDegree) as BackoffTime;

k = 1;

while(k <= BackoffTime)

 wait in doze mode until the next sub-cycle starts;

 forall 'x' ϵ CI(SCn
i,j) do

 forall 'y' ϵ PrefetchingSet(Tv) do
 if(x.id == y.id) then

 UnPrefetchSet(Tv) = UnPrefetchSet(Tv) + y;

 endif

 endfor

 endfor

 PrefetchingSet(Tv) = PrefetchingSet(Tv) - UnPrefetchSet(Tv);

 k = k + 1;

end while

sort(UnPrefetchSet(Tv)); // according to the index of the items contained

restart(Tv);

}

Fig. 6. Back-off and Restart at Sub-Cycle level

Back-Off and Restart at Sub-Cycle Level

Fig. 6 shows the pseudo code for back-off and restart at sub-cycle level, where (SC
n

p,q) is the

sub-cycle leading the current sub-cycle (SC
n

i,j), the transaction 'Tv' is first aborted. The

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1665

mobile client finds the data item having maximum contention value M in the ReadSet(Tv),

which is broadcasted at the beginning of the sub-cycle. After that, the random number,
denoted by "BackoffTime", is generated depending on the value of M. Finally, Tv waits in

doze mode for BackoffTime cycles before restarting.

Mobile clients, including those in back-off phase, get the control information at the

beginning of each sub-cycle. If it finds out that one of the locally cached data items is updated
in the previous sub-cycle, the items are excluded from PrefetchingSet(Tv) and included in

UnPrefetchSet(Tv). If the transaction 'Tv' successfully goes through the partial backward

validation, it resumes running.

Last Partial Backward Validation at Sub-Cycle Level

Fig. 7 shows the pseudo code of the last partial backward validation at sub-cycle level. When
a transaction 'Tv' finishes execution before the beginning of a new sub-cycle, it is locally

committed if it is a read only transaction, otherwise it waits for server validation. The client

stores the current sub-cycle number, denoted by "SC
n
i,j", in its cache, and submits it to the

server after the transaction Tv finishes execution, where is the server use it for the final
validation.

 //Tv: mobile transaction

//CI(SCi,j): the set of data items that was updated during the previous broadcast sub-cycle 'SCx,y'.

//ReadSet(Tv): the current read data set of the transaction 'Tv'

//WriteSet(Tv): the current write data set of the transaction 'Tv'

//PrefetchingSet(Tv): the set of data items to be prefetched by the transaction 'Tv'
LastPartialBackwardValidationSC(Tv, SCn

i,j)

{

PrefetchingSet(Tv) = PrefetchingSet(Tv) U ReadSet(Tv);

if(Tv is read-only transaction) then

 commit(Tv);

 exit();

endif

if(j>1) then

 C = SCn
i,j-1;

else

 C = SCn
i-1,n;

endif

submit WriteSet(Tv) and C to server;

if(Tv is validated) then

 commit(Tv);

 exit();

else

 BackoffAndRestartSC(Tv, C);

endif

}

Fig. 7. Last Partial Backward Validation at Sub-Cycle level

3.2.2 Forward Validation at Sub-Cycle Level at the Server

The server does forward validation by comparing the write data set of the validating

transaction against the read data sets of all currently running transactions. Transactions
running on the server having common items between their read data sets and the write data

1666 Ahmad Al-Qerem et al.: Scheduling of Concurrent Transactions in Broadcasting Environment

set of the validating transaction, making it to abort. This is the way in which data conflicts

are resolved.

Passing forward validation by a mobile transaction is constrained to passing a preceding

last backward validation. This is reasonably required because, during the current sub-cycle,
specifically after the transaction has locally passed the partial backward validation and

before the transaction went through final validation, some transactions may be committed at

the server. Accordingly, the mobile client records the corresponding sub-cycle number
during which the partial backward validation is passed, and it submits it and the desired write

data set to the server for forward validation.

//Tv: the validating mobile transaction

//Ta: a set of the currently running server transactions

//SCx,y: the broadcast sub-cycle number when 'Tv' passed the last partial backward //validation

//Tc : a set of transactions which committed at the server during the broadcast //sub-cycle SCx,y

//ReadSet(T): read data set of the transaction 'T'
//WriteSet(T): write data set of the transaction 'T'

//CI(SCx,y): the set of the data items that was updated during the previous //broadcast sub-cycle 'SCx,y'

//ContentionDegree[x]: the contention degree of the data item 'x'

ForwardValidationSC(Tv, SCn
i,j){

if(Tv is a mobile transaction) then

 if(LastBackwardValidationSC(Tv) is false) then

 abort(Tv);

 forall 'x' ϵ WriteSet(Tv) do

 ContetionDegree[x] = ContetionDegree[x] + 1;

 endfor

 endif

endif
forall T ϵ Ta do

 if(Readset(T) ∩ WriteSet(Tv) ≠ Ø) then

 abort(T);

 endif

endfor

if(j<n) then

 CI(SCn
i,j+1) = CI(SCn

i,j) U WriteSet(Tv);

else

 CI(SCn
i+1,1) = CI(SCn

i,j) U WriteSet(Tv);

endfor

commit(Tv);}
LastBackwardValidationSC(Tv)

{

forall T ϵ Tc do

 if(WriteSet(T) ∩ ReadSet(Tv) ≠ Ø) then

 return false;

 endif

endfor

}

Fig. 8. Forward Validation at Sub-Cycle level

The Algorithm for Forward Validation at Sub-Cycle Level

Fig. 8 shows the pseudo code for forward validation at sub-cycle level. Whenever a

transaction is committed at the server, the database is updated using the write data set of that

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1667

transaction. The write data sets of all committed transactions in a sub-cycle are maintained by

the server to generate the control information that will be broadcasted at the beginning of the
next broadcast sub-cycle. Control information is used by mobile clients to run the partial

backward validation for their mobile transactions. If the validating transaction 'Tv' fails the at

forward validation, the server exploits the write data set of 'Tv' to calculate the contention

degree of each of these items. Finally, successfully committed update transaction is adding to
the control information of the next sub-cycle, as a result that transaction commits before it

terminates.

Adjusting Contention Degree at Sub-Cycle Level

Algorithm 6 shows the pseudo code for adjusting contention degree at sub-cycle level. At the

beginning of each sub-cycle, the contention degrees of all data items are readjusted by using
"Algorithm5". If there were no transactions competing to write on the item 'x', then the

contention degree of 'x' is initialized as (0). If there were 'k' update transactions competing to

write on 'x', the aborted transactions will pick a random number 'w' between (0) and (k-2) and

have to wait until 'w' sub-cycles are elapsed before they are restarted. Due to this method, the
'k' update transactions competing for the data item 'x' are expected to be uniformly

distributed across the next 'k' broadcast cycles. Thus, the contention degree of the data item

'x' in this case is readjusted to (1).

//ContentionDegree[x]: the contention degree of the data item 'x'

AdjustContentionDegreeSC()

{

forall 'x' in DB do

 if(ContentionDegree[x] > 1) then ContentionDegree[x] = 1;

 else ContentionDegree[x] = 0;

 endif

endfor

}

Fig. 9. Adjusting Contention Degree at Sub-Cycle level

4. Performance Analysis

In this section, the performance of the proposed method AOCCRBSC is analyzed using the
experimental results from the simulator, which is implemented regarding the adaptive model

against AOCCRB [7]. Testing was carried out through out a repetitive comparison between

the set of results coming from the simulator and a set of manually produced results applying

the same conditions (i.e. parameter settings). In the next sections (5.1, 5.2), the simulator is
described, the simulation results are analyzed and discussed, respectively.

4.1 Simulator Specifications

The simulation program is built to evaluate the performance of the proposed AOCCRBSC

(Adaptive Optimistic Concurrency Control using Random Back-off at Sub-Cycle level)

scheme against AOCCRB [7]. This simulator is an object-oriented program which is
implemented using Java programming language running on a 1.00 GHz AMD E1-2100 APU

processor PC equipped with 4 GB of RAM and using Windows 7 Ultimate SB1 platform.

Mobile transactions in the simulator are allowed to keep running until they eventually
commit, regardless of any time limitations. In other words, the simulated environment does

1668 Ahmad Al-Qerem et al.: Scheduling of Concurrent Transactions in Broadcasting Environment

not support real-time conditions; so that a mobile transaction does not have to meet any

additional deadline constraints to commit. The parameter settings of the simulator are shown
in Table 1 down below.

Table 1. Simulation Parameters

Component Parameter Range

Server
Zipf parameter (θ) 0.0-1.0

Data item size 8000 bits

Mobile Transaction

Transaction length (# of operations) 8

Read operation probability

(for update transactions)
0.5

Read-only to update transactions ratio 0.7

Mean inter-operation delay
65,536 bit-times (exponentially

distributed)

Mean inter-transaction delay
131,072 bit-times

(exponentially distributed)

The number of mobile transactions 100-1000

4.2 Simulation Results Analysis and Evaluation

The metrics used to measure the performance of the proposed method are the response time,

the average number of aborts, and the average number of commits. The performance

difference between the proposed method and AOCCRB [7] is shown by varying these

parameters’ values, and the number of sub-cycles.

4.2.1 The Effect of Sub-cycles on Response Time

The effect of varying the number of sub-cycles, is tested against using a single sub-cycle that

indicates the absence of cycle decomposition, on the response time is discussed in this

section. As shown in Fig. 10, the response time of the proposed AOCCRBSC method is
slightly better than that of the AOCCRB [7] when the cycle is not decomposed, and the

difference starts to expand as the number of sub-cycles gets larger.

Reasonably, AOCCRBSC has a better response time over AOCCRB even when the cycle
is not decomposed because of the usage of the predeclaration, where the cost (time and

power) of reading from the cache is much smaller than reading from the channel, in the
proposed technique. Moreover, the time spent (and power consumed) by a restarted

transaction before abortion is much smaller, in case of using sub-cycles, for the AOCCRBSC

method; which leads to a better response time.

Furthermore, the overall response time is enhanced by using AOCCRBSC because of
adapting back-off to distribute the aborted update transactions over the next sub-cycles

instead of the longer cycles which decreases the time spent by the aborted transaction

waiting to restart.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1669

Fig. 10. Response time

4.2.2 The Effect of Sub-Cycles On the Average Number of Aborts

In this section, the average number of locally aborted transactions by the proposed

AOCCRBSC method is compared to that of AOCCRB. Fig. 11 shows that the average
number of local aborts by AOCCRBSC is larger than that of AOCCRB. This is because

backward validation is more frequently carried out in AOCCRBSC as mobile clients

performs the validation at the beginning of each sub-cycle; and in turn conflicts are also
more frequently detected, and resolved by locally aborting conflicted transactions.

Moreover, conflicts are detected and resolved by AOCCRBSC for mobile transaction at
earlier stages of their execution, which not only increases number of locally aborted mobile

transactions but also decreases the cost (in both time and power consumption) of transaction

abortion. Obviously, aborting the mobile transaction at the server is much expensive than at
mobile clients, the larger number of locally aborted transactions can lead to a better

performance. However, read-only transactions are allowed to commit locally whenever they

complete their execution before the end of the current sub-cycle, and update transactions
may grant commit by the end of the current sub-cycle as well.

Fig. 11. Average Number of Aborts

1670 Ahmad Al-Qerem et al.: Scheduling of Concurrent Transactions in Broadcasting Environment

4.2.3 The Effect of Sub-Cycles On the Average Number of Commits

In this section, the average number of committed transactions by the proposed AOCCRBSC
method is compared to that when AOCCRB is applied, Fig. 12 shows that the number of

committed transactions by AOCCRBSC is the same as for AOCCRB; when the cycle is not

decomposed, and starts to get larger as the number of sub-cycles increases.

Only one transaction among all the conflicting update transaction in the cycle, is allowed
to commit for both methods when decomposition is not applied, However, AOCCRB does
not benefit from cycle decomposition, while AOCCRBSC incrementally accepts transactions

from each group of the conflicting update transactions at each number of sub-cycles. In other

words, the number of committed update transactions by AOCCRBSC in any cycle is
proportional to the number of sub-cycles constituting this cycle, while AOCCRB allows only

one conflicted update transaction to commit in each cycle.

Moreover, as the actual reason of conflicts is update transactions; as the rate of update
transactions termination increased, the number of conflicts decreases accordingly. In fact, as

the probability of (update) transaction to commit is increased, the competition to commit is
reduced, which is the case of using AOCCRBSC. Furthermore, when the number of conflict

originators decreases, the number of locally committed read-only transactions is increased as

well.

Fig. 12. Average Number of Commits

5. Conclusion and Future Work

Due to the analysis of simulation results in the previous section, AOCCRBSC method has

shown a better performance than AOCCRB, and intern is considered as a powerful optimal
concurrency control method that suits wireless broadcasting environments.

The enhanced performance shown by AOCCRBSC is represented by gaining better
response time, power conservation, and utilized usage of uplink bandwidth over AOCCRB

for all predefined simulation setting.

Finally, it is more effective to apply the proposed model, because the response time is still
enhanced even in the absence of cycle decomposition because of the predeclaration
exploiting, which uses the knowledge obtained from the transaction's failed to execute,

allowing the mobile client to read the unprefetched data items from air in the sequence they

appear in the cycle instead of that in the rerun transaction.

In the future, the target is to extend the simulator for the testing of STUBcast to improve

the performance analysis of the proposed method. Moreover, more evaluation metrics (such

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1671

as data currency, uplink and downlink usage …) are to be implemented by the simulator to

precisely determine the performance of the proposed method compared to others.
Furthermore, the simulation is developed to test more factors (transaction length, cycle size,

etc.). Finally, an in depth research to find a mechanism that determines the optimal number

of sub-cycles that gives the best performance of the proposed method may be performed.

References

[1] Houling Ji, Victor C.S. Lee, Chi-Yin Chow, Kai Liu, Guoqing Wu, “Coding-based

cooperative caching in on-demand data broadcast environments,” Information Sciences, vol.

385-386, pp. 138-156, 2017. Article (CrossRef Link)
[2] A. Datta, D. E. VanderMeer, A. Celik, and V. Kumar. “Broadcast protocols to support

efficient retrieval from databases by mobile users,” ACM Transactions on Database Systems,

vol. 24, no. 1, pp. 1-79, March, 1999. Article (CrossRef Link)

[3] Ali R. Hurson, Sahra Sedigh Sarvestani and Mike Wisely, “Energy-efficient algorithms for

data retrieval from indexed parallel broadcast channels,” Sustainable Computing: Informatics

and Systems, vol. 10, pp. 20-35, 2016. Article (CrossRef Link)

[4] J. Juran, A.R. Hurson, N. Vijaykrishnan and S. Kim, “Data Organization and Retrieval on

Parallel Air Channels: Performance and Energy Issues,” Wireless Networks, vol. 10, no. 2, pp.

183–195, 2004. Article (CrossRef Link)

[5] K. Lee, H. Leong and A. Si, "A semantic broadcast scheme for a mobile environment based

on dynamic chunking," in Proc. of 20th IEEE International Conference on Distributed
Computing Systems (ICDCS 2000), pp. 522-529, 2000. Article (CrossRef Link)

[6] K. Lee, H. Leong and A. Si, "Semantic data access in an asymmetric mobile environment," in

Proc. of Third International Conference on Mobile Data Management (MDM 2002), pp.

94-101, 2002. Article (CrossRef Link)

[7] Sunggeun Park and Sungwon Jung, “An energy-efficient mobile transaction processing

method using random back-off in wireless broadcast environments,” Journal of Systems and

Software, vol. 82, no. 12, pp. 2012-2022, December, 2009. Article (CrossRef Link)

[8] Sungwon Jung and Keunha Choi, “A concurrency control scheme for mobile transactions in

broadcast disk,” Data & Knowledge Engineering, vol. 68, no. 10, pp. 926-945, October, 2009.

Article (CrossRef Link)

[9] Young-Kyoon Suh, Richard T. Snodgrass and Sabah Currim, “An empirical study of

transaction throughput thrashing across multiple relational DBMSes,” Information Systems,
vol. 66, pp. 119-136, June, 2017. Article (CrossRef Link)

[10] Md. Anisur Rahma, “An Efficient Concurrency Control Technique for Mobile Database

Environment,” Global Journal of Computer Science and Technology Software & Data

Engineering, vol. 13, no. 2, 2013. Article (CrossRef Link)

[11] Qasim Abbas, Hammad Shafiq, Imran Ahmad and Sridevi Tharanidharan, “Concurrency

control in distributed database system,” in Proc. of 2016 International Conference on

Computer Communication and Informatics (ICCCI), 2016. Article (CrossRef Link)

[12] Jan L. Harrington, “Chapter 22 - Concurrency Control,” Relational Database Design and

Implementation, 4th edition, pp. 449-470, Morgan Kaufmann, Boston, 2016.

Article (CrossRef Link)

[13] O. A. Rawashdeh, H. A. Muhareb and N. A. Al-Sayid, "An optimistic approach in distributed
database concurrency control," in Proc. of 2013 5th International Conference on Computer

Science and Information Technology, pp. 71-75, 2013. Article (CrossRef Link)

[14] Q. Zheng, K. Zheng, H. Zhang and V. C. M. Leung, "Delay-Optimal Virtualized Radio

Resource Scheduling in Software-Defined Vehicular Networks via Stochastic Learning,"

IEEE Transactions on Vehicular Technology, vol. 65, no. 10, pp. 7857-7867, Octpber, 2016.

Article (CrossRef Link)

https://dx.doi.org/10.1016/j.ins.2017.01.012
https://dx.doi.org/10.1145/310701.310710
http://www.sciencedirect.com/science/article/pii/S2210537915300032
http://www.sciencedirect.com/science/article/pii/S2210537915300032
https://dx.doi.org/10.1016/j.suscom.2016.03.001
https://dx.doi.org/10.1023/B:WINE.0000013082.03518.2e
https://dx.doi.org/10.1109/ICDCS.2000.840966
https://dx.doi.org/10.1109/MDM.2002.994380
https://dx.doi.org/10.1016/j.jss.2009.06.053
https://dx.doi.org/10.1016/j.datak.2009.02.008
http://www.sciencedirect.com/science/article/pii/S0306437915301678
http://www.sciencedirect.com/science/article/pii/S0306437915301678
https://dx.doi.org/10.1016/j.is.2016.12.004
https://globaljournals.org/GJCST_Volume13/4-An-Efficient-Concurrency-Control-Technique.pdf
https://dx.doi.org/10.1109/ICCCI.2016.7479987
https://dx.doi.org/10.1016/B978-0-12-804399-8.00022-3
https://dx.doi.org/10.1109/CSIT.2013.6588761
https://dx.doi.org/10.1109/TVT.2016.2538461

1672 Ahmad Al-Qerem et al.: Scheduling of Concurrent Transactions in Broadcasting Environment

[15] Muhammad Baqer Mollah, Md. Abul Kalam Azad and Athanasios Vasilakos, “Security and

privacy challenges in mobile cloud computing: Survey and way ahead,” Journal of Network

and Computer Applications, vol. 84, no. 15, pp. 38-54, 2017. Article (CrossRef Link)

[16] Il Young Chung, B. Bhargava, M. Mahoui and L. Lilien, "Autonomous transaction

processing using data dependency in mobile environments," in Proc. of The Ninth IEEE

Workshop on Future Trends of Distributed Computing Systems (FTDCS’03), pp. 138-144,

2003. Article (CrossRef Link)
[17] SangKeun Lee, Chong-Sun Hwang and M. Kitsuregawa, "Using predeclaration for efficient

read-only transaction processing in wireless data broadcast," IEEE Transactions on

Knowledge and Data Engineering, vol. 15, no. 6, pp. 1579-1583, Nov.-Dec. 2003.

Article (CrossRef Link)

[18] SangKeun Lee, Chong-Sun Hwang and M. Kitsuregawa, "Efficient, Energy Conserving

Transaction Processing in Wireless Data Broadcast," IEEE Transactions on Knowledge and

Data Engineering, vol. 18, no. 9, pp. 1225-1238, Sept. 2006. Article (CrossRef Link)

[19] E. Pitoura and P. K. Chrysanthis, "Multiversion data broadcast," IEEE Transactions on

Computers, vol. 51, no. 10, pp. 1224-1230, October, 2002. Article (CrossRef Link)

[20] Xiangdong Lei, Yuelong Zhao, Songqiao Chen and Xiaoli Yuan, “Concurrency control in

mobile distributed real-time database systems,” Journal of Parallel and Distributed
Computing, vol. 69, no. 10, pp. 866-876, 2009. Article (CrossRef Link)

[21] Yan Huang and Yann-Hang Lee, "STUBcast - efficient support for concurrency control in

broadcast-based asymmetric communication environment,"in Proc. of Proceedings Tenth

International Conference on Computer Communications and Networks (Cat. No.01EX495),

pp. 262-267, 2001. Article (CrossRef Link)

http://www.sciencedirect.com/science/article/pii/S1084804517300632
http://www.sciencedirect.com/science/article/pii/S1084804517300632
https://dx.doi.org/10.1016/j.jnca.2017.02.001
https://dx.doi.org/10.1109/FTDCS.2003.1204325
https://dx.doi.org/10.1109/FTDCS.2003.1204325
https://dx.doi.org/10.1109/TKDE.2003.1245294
https://dx.doi.org/10.1109/TKDE.2006.142
https://dx.doi.org/10.1109/TC.2002.1039848
http://www.sciencedirect.com/science/article/pii/S0743731509001166
http://www.sciencedirect.com/science/article/pii/S0743731509001166
https://dx.doi.org/10.1016/j.jpdc.2009.06.008
https://dx.doi.org/10.1109/ICCCN.2001.956261

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1673

 Ahmad Al-Qerem Graduated in applied mathematics and MSc in Computer Science at

the Jordan University of Science and Technology in 1997 and 2002, respectively. After
that, he was appointed as full-time lecturer at the Zarqa University and also a part-time
lecturer at the Arab Open University. He has also held a post in the Ministry of Labor. He
obtained a PhD from Loughborough University, UK. His research interests are in
performance and analytical modeling, mobile computing environments, protocol

engineering, communication networks, transition to IPv6, and transaction processing. He
has published several papers in various areas of computer science. Currently, he has a full
academic post as associate professor and the head of the Department of Internet
Technology at Zarqa University - Jordan.
Email: ahmad_qerm@zu.edu.jo

Ala Hamarsheh is an assistant professor at the Faculty of Engineering and Information

Technology of the Arab American University - Jenin. He obtained a PhD in engineering
sciences from Vrije Universiteit Brussel (VUB)/Brussels-Belgium in 2012. He graduated in
computer science at the Faculty of Science, Birzeit University, Palestine, in 2000. He
obtained an MSc degree in computer science at the Kind Abdullah II School for IT, The
University of Jordan, Jordan, in 2003. He has published numerous papers in international

refereed journals and conferences.
E-mail: ala.hamarsheh@aauj.edu

Yaser A. Al-Lahham received the B.S degree from University of Jordan in 1985, the

M.S. degree from Arab Academy (Jordan) in 2004, and the PhD in Computer science from
Bradford University (UK) in 2009. He is working as an assistant professor in the Department
of Computer Science at Zarqa University in Jordan. His research interest includes P2P
information retrieval systems, text clustering, and Databases.
Email: yasirlhm@zu.edu.jo

Mujahed Eleyat is currently an Assistant Professor in the Department of Computer

Systems Engineering in the Faculty of Engineering and Information Technology at the
Arab American University. He received his B.A. in Electrical Engineering from Birzeit
University and his Master and Ph.D degrees from University of Arkansas and Norwegian
University of Science and Technology respectively. Dr. Eleyat areas of expertise include
high performance computing, embedded systems, computer architecture, and mobile
computing.
Email: mujahed.eleyat@aauj.edu

mailto:ahmad_qerm@zu.edu.jo
mailto:ala.hamarsheh@aauj.edu

