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1  | INTRODUC TION

Surface treatment of the titanium (Ti) dental implant has been a 
long‐studied issue on the field of oral implantology since the first 

machined implants demonstrated a significant failure rate in com‐
promised healing conditions (Jungner, Lundqvist, & Lundgren, 
2005; Khang, Feldman, Hawley, & Gunsolley, 2001). Limited by 
the technologic options of the 1970s, surface modifications were 
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Abstract
Objectives: This study aimed to analyze and compare the topographical, chemical, 
and osseointegration characteristics of a sandblasted acid‐etched surface (SLA 
group), a sandblasted thermally oxidized surface (SO group), and a surface chemically 
modified by hydrofluoric (HF) acid (SOF group).
Materials and methods: Following the preparation and characterization of the rele‐
vant surfaces, 90 implants (30 for each group) were placed on the pelvic bone of six 
sheep. Resonance frequency analysis (RFA), insertion (ITV), removal torque value 
(RTV), and histomorphometric analyses (BIC%) were performed after three and 
8 weeks of healing. The results were analyzed by nonparametric tests (p < 0.05).
Results: The roughness value (Ra) in the SOF group was significantly lower than the 
SLA and the SO group (p = 0.136, p < 0.001, respectively). This resulted in a substan‐
tially inferior ITV 14.83 N/cm (SD: 4.04) than those achieved in the SLA and SO 
groups (19.50 (SD: 6.07) and 20.17 N/cm (SD: 8.95), respectively; p = 0.001). A statis‐
tically significant change in the RFA from the baseline (47.36 ISQ, SD: 6.93) to the 3rd 
week (62.56 ISQ, SD: 5.29) was observed in the SOF group only (p = 0.008). The highest 
postplacement RFA and RTV values were measured from the SLA group (61.11 ISQ, 
SD: 7.51 and 78.22 N/cm, SD: 28.73). The early‐term (3rd week) BIC% was highest in the 
SO group (39.93%, SD: 16.14). After 8 weeks, the differences in BIC% values were statisti‐
cally not significant.
Conclusions: Adjunct HF acid application on the thermally oxidized surface did not 
provide an additional benefit compared to the sandblasted and acid‐etched surface 
(SLA group).
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commenced with increasing surface roughness by sandblasting 
the dental implants using various particles (i.e., Al2O3, TiO2). This 
yielded an important increase in the bone‐to‐implant contact 
(BIC) % (Piattelli, Manzon, Scarano, Paolantonio, & Piattelli, 1998; 
Wennerberg, Albrektsson, & Andersson, 1996). Combining the 
sandblasting technique with surface conditioning via various acids 
optimized the chemical composition, altogether providing a signifi‐
cant clinical advantage compared to the machined implant surfaces 
(Buser et al., 1999; Li et al., 2002). As a result, moderately rough 
implant surfaces were set as an industry standard for dental im‐
plants. Nevertheless, the accumulation of the dental plaque onto 
the roughened implant surface was linked to additional biologic 
complications such as perimucositis/implantitis (Amoroso, Adams, 
Waters, & Williams, 2006). This problem was attempted to be 
solved by bringing the “rough” zone away from the oral environ‐
ment (the hybrid implants) (Zaffe, 2017), but the drawbacks of the 
machined surface remained.

Meanwhile, surface technology focused on the chemical prop‐
erties of Ti surfaces and optimization of the topographical features 
from microscale to nanoscale (Hotchkiss, Ayad, Hyzy, Boyan, & 
Olivares‐Navarrete, 2017; Wennerberg & Albrektsson, 2010). The 
passive thin amorphous oxide layer (2–10 nm) that provided the prin‐
cipal features of the Ti was modified by thermal oxidation, thereby 
allowing growth of the oxide layer (c. 60 μm thick) with crystalline 
features (Guleryuz & Cimenoglu, 2004; Wen, Wen, Hodgson, & Li, 
2012). Consequently, in vivo studies confirmed that thermal oxi‐
dation not only enhanced the stem cell behavior but also improved 
the in vivo properties of the osseointegration (Bodelon et al., 2016; 
Wang et al., 2016). This finding was related to the emerged sub‐
micron irregularities and deep grain boundaries of the thickened 
oxide layer, cultivating protein absorption and cell adhesion (Kumar, 
Narayanan, Raman, & Seshadri, 2010; Saldana et al., 2007; Wang 
et al., 2016). The desired submicron scale topography with a low 
roughness value was also obtained via the hydrofluoric (HF) acid 
(Mendonça, Mendonça, Aragao, & Cooper, 2008), which provided a 
similar positive outcome in the challenging healing conditions com‐
pared to the rougher surfaces (Ellingsen, Johansson, Wennerberg, 
& Holmen, 2004; Klokkevold, Nishimura, Adachi, & Caputo, 1997).

This study aimed to analyze and compare the topographical, 
chemical, and osseointegration characteristics of a sandblasted ther‐
mally oxidized surface and its chemical modification by HF on an 
experimental animal model.

2  | MATERIAL AND METHODS

2.1 | Estimation of the required sample size

Data obtained from similar studies (Ou et al., 2016; Sul et al., 2002) 
were referred to for calculation of the required sample size. Effect 
sizes of 3.328, 1.484, and 1.978 were implied for the surface rough‐
ness Ra‐(average), removal torque value (RTV) and BIC% variables, 
respectively. Using the commercial software (GPower, Düsseldorf, 
Germany), an estimated minimum of five titanium disks for the 

experimental surface characterization, nine implants for the me‐
chanical resistance test (RTV), and six implants for the histomorpho‐
metric analysis (BIC%) were calculated to detect an approximately 
30% difference at the level of α = 0.05 with a statistical power of 
80%. Accounting the designated two healing periods (3 and 8 weeks 
of healing for the representation of early‐ and late‐term healing, re‐
spectively), 90 implants distributed on six sheep were finally chosen 
for the animal experiment.

2.2 | Preparation and characterization of the 
experimental surfaces

Fifteen titanium alloy disks (Ti‐6Al‐4V), 5 mm in diameter and 2 mm 
in height, and titanium alloy dental implants of identical composi‐
tion (Ti‐6Al‐4V) with a commercial‐use size (3.5 mm diameter and 
8 mm length) were manufactured by a commercial manufacturer 
(Devadent, Inc., Istanbul, Turkey); (Figure 1) The surface prepara‐
tion procedures were performed as follows: (a) Sandblasting and 
acid etching (SLA) group: Specimens were prepared according to the 
well‐established protocol of large‐grit sandblasting with aluminum 
oxide (250 μm) and acid etching with HCl/H2SO4; (b) Sandblasting 
and thermal oxidation (SO) group: Specimens were blasted with 
250 μm sized aluminum oxide and then subjected to thermal oxi‐
dation at 650°C for 12 hr; (c) Sandblasting, thermal oxidation, and 
HF acid etching (SOF) group: Specimens were sandblasted and 
thermally oxidized as performed on the SO group, followed by acid 
etching via HF acid. To investigate solely the effect of the surface 
properties and isolate the effect of the macrogeometry, the thread 
profile of the implants was reduced but not completely eliminated to 
prevent the risk of lack of primary stability. Different‐colored cover 
screws were used to discriminate the experimental groups upon the 
retrieval of the bone blocks. All implants and disks were exposed to 
ultraviolet‐c light (UV‐C) for 3 min and washed using an ultrasonic 
washer in a sterile room. Finally, all materials were sterilized by 
25 kgw gamma‐rays.

F I G U R E  1  Experimental disks and implants of the (a) SLA, (b) 
SO and (c) SOF surfaces
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2.3 | Surface characterization

The morphology of implant surfaces was analyzed by a scanning 
electron microscope (SEM; JEOL Neoscope JCM‐5000, Eching, 
Germany) at different magnifications. The surface roughness was 
determined quantitatively with an atomic force microscope (AFM‐
XE 100 SPM System; Induspia 5F, Suwon, Korea) in the noncontact 
mode at the same scan size (50 μm × 50 μm) using the noncontact 
cantilever tip (NSC15 10M; Park System; Induspia 5F) with a radius 
of <8 nm. The maximum measurement range is determined by the 
Z scanner range which can move up to 12 μm. The automatic cali‐
bration by software XEP (SPM System; Induspia 5F) prevented the 
formation of waviness or error and consequent need of any filters. 
Using AFM measurements, Ra (the roughness average of the sample 
surfaces), Rz (the 10‐point average roughness, which is the arithme‐
tic average of the five highest peaks and five lowest valleys in the 
scan line), and Rq (the root mean square value) were determined. At 
the end of the imaging process, the roughness average of the sam‐
ple surfaces was defined as an Ra‐(average) parameter. Using the 
optical profilometry (Axio CSM 700 Optic Profilometry; Zeiss, Jena, 
Germany), the spatial (RSm) and the profile height parameters (Ra 
and Rz) of the screw‐type dental implants were measured from the 
top, valley and the flank regions of the implant threads according to 
the proposition by Wennerberg and Albrektsson (2000).

Additionally, energy dispersive X‐ray spectroscopy (EDS Versa 
3d; FEI, Hillsboro, OR, USA) was performed to determine the chem‐
ical composition of each surface. EDS measurements were taken 
at a 3 kV acceleration voltage using an EDAX detector, which was 
equipped with a dual beam electron microscope. Element compo‐
sitions on the surfaces were determined using X‐ray photoelec‐
tron spectroscopy (XPS) analysis (K‐Alphatm; Thermo Scientific™, 
Waltham, USA). Survey spectra were collected using an X‐ray spot 
size of 400 mm, energy step size of 1 eV, and pass energy of 150 eV 
and were adjusted to the reference 285C1s peak.

2.4 | Animal experiment

All experimental interventions performed on animals were ap‐
proved by the Ethics Committee for Animal Research of the Istanbul 
University, Istanbul, Turkey (Approval no: 2016/21). Animals were 
housed and operated in the Department of Surgery, Veterinary 
Faculty of Istanbul University, and all experimental procedures were 

conducted in accordance with the animal research guidelines of the 
Veterinary Faculty of the Istanbul University. Six male “Anatolian ki‐
vircik breed” sheep of 3 years’ age with a weight between 50 and 
70 kg were used. The animals were monitored for 1 week and fed 
with a standard diet prior to the initiation of the experiment. Animals 
were kept fasting for 24 hr before all surgical procedures.

To reduce the risk of infection and pain, the animals were treated 
with antibiotics (Novosef 1 g, 20 mg/kg (i.m.); Zentiva, Istanbul, 
Turkey) and analgesics (Melox 0.1 mg/kg (i.m.); Nobel Drug, Istanbul, 
Turkey), preoperatively and postoperatively for 5 days. For the sur‐
gical procedure, the animals were sedated with xylazine (0.1 mg/kg 
(i.m.); Rompun, Bayer, Switzerland), and the induction was performed 
with Ketalar (3 mg/kg (i.v.), ketamine HCl, Canada). Anesthesia was 
maintained with 2%–3% isoflurane and 100% oxygen. Animals 
were placed in the lateral recumbent position. Then, the area cor‐
responding to the ilium and acetabulum was shaved, washed, and 
disinfected with povidone iodine. To access the ilium, a 25–30 cm 
longitudinal incision was made at the midpelvis, from the ala‐osis 
ilium to the trochanter major. After separation of skin and subcu‐
taneous tissues, the fascia lata was incised, and blunt dissection of 
the gluteal muscles was performed. Then, the pelvis was exposed, 
and the periosteum was dissected. Distribution of the implants was 
performed in a previously established random order ensuring equal 
correspondence to the cortical and spongious parts of the pelvis. All 
osteotomies were prepared by five sequential twist drills with a final 
diameter of 3.5 mm.

2.5 | Stability measurements

Mechanical tests involved the reverse unscrewing of the implant 
body damage bone integrity around the implants, foreclosing any 
further analysis. Therefore, implants allocated for the removal 
torque test (RTV; nine implants per pelvis) were kept separate from 
the other implants (six implants per pelvis) by their placement to the 
left or right pelvic area (Figure 2). To maintain adequate bone around 
each fixture, the implants were distributed in a crossfacing order, 
and a 10 mm distance between each implant was sustained using 
a periodontal probe. Upon placement of the implants, the highest 
achieved torque value upon implant insertion (ITV) was measured 
via a surgical hand‐piece (Saeyang Microtech Co., Ltd., Daegu, Kores) 
that was previously confirmed for calibration via a torque meter. 
Stability of the implants was measured via resonance frequency 

F I G U R E  2   Surgical placement of 
implants on the left and right side of 
the sheep. The implants were placed 
in across‐facing order to facilitate (a) 
mechanical and (b) histologic analyses. 
Implants of the variant surface treatments 
were differentiated by colored cover 
screws

(a) (b)
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analysis (RFA; Ostell, Integration Diagnostics AB, Sävedalen, 
Sweden). Two consecutive RFA measurements were taken, and the 
mean implant stability quotient (ISQ) was recorded as final. Flap clo‐
sure was completed after the repositioning of the muscles, and the 
facia was sutured using monofilament absorbable suture material 
(Monocryl; Ethicon (No: 1), Istanbul, Turkey). The skin was sutured 
by nonabsorbable monofilament polypropylene suture (Medilen; 
Medeks (No: 1), Istanbul, Turkey). Six animals were divided into two 
equal groups according to the healing periods (3 and 8 weeks) to in‐
vestigate early‐ and late‐term osseointegration parameters.

2.6 | Fluorochrome labelling

For the dynamic investigation of bone mineralization and deposi‐
tion, the following fluorescence labels were administered accord‐
ing to the schedule established by van Gaalen et al. (2010). Calcein 
green (Calcein C‐0875; 10 mg/kg (i.v.); Sigma Chemical Co., Aldrich, 
MI, USA) administered on the 21st day. Oxytetracyclin (Primamycin/
LA, 20 mg/kg (i.m.); Zoetis, Istanbul, Turkey) was administered to 
the 8‐week healing group on the 42nd day. Alizarin red RPE (Carlo 
Erba Reagents C.I 58005; 35 mg/kg (i.v.), Cornaredo, Italy) was ad‐
ministered 3 days prior to the scarification of the animals, which was 
allowed to heal for 8 weeks. All markers were prepared according to 
the manufacturers’ written protocol. The calcein and alizarin red so‐
lutions were filtrated with 0.45 μm filters, and the PH was adjusted 
as 7.1–7.3 before administration.

2.7 | Sacrification

Upon the completion of three and 8 weeks of healing (three animals 
per each period), sacrification was performed in accordance with the 
principles of the Islamic sacrifice ritual, as requested by the Ethical 
Committee (Nakyinsige et al., 2013). The corresponding pelvis areas 
were exposed immediately after sacrifice, and the final RFA values 
were measured again. The RTV was measured using a digital torque 
screwdriver (TSD‐400; Electromatic Co., Inc., New York, NY, USA), 
which was held in the long axis of each implant. An incremental 
counter clockwise unscrewing torque force was applied until the im‐
plant became loose, and the achieved maximum torque force was 
recorded in N/cm.

2.8 | Histologic and histomorphometric analysis

The pelvic bone that was related to the histological analysis was re‐
sected en block and fixed in 10% buffered formalin for 2 days. A bone 
block including the six implants was trimmed into the blocks incorpo‐
rating the surrounding bone. Blocks were dehydrated in ethanol with 
an increasing alcohol scale (60%, 80%, 96%, and 100%), 24 hr for each 
scale. Then, all samples were infiltrated in the methyl methacrylate 
resin (Technovit 7200 VLC; Heraeus Kulzer GmbH & Co. KG, Wehrheim, 
Germany) and alcohol with increasing resin percentages (30%, 50%, 
70%, 100%) under vacuum. Longitudinal sections from each implant 
were obtained using a dedicated nondecalcified histologic slicing 

system (Exact 300 CL; Exakt Apparatebau, Norderstedt, Germany). 
Ground sections of 300 μm were prepared, thinned to 40 μm, and 
stained with toluidine blue. One section from each group was thinned 
to 100 μm and left without staining for the fluorescence microscopic 
examination.

Sections were examined in a stereomicroscope (Olympus BX60, 
Tokyo, Japan) attached to a color video camera (Olympus® DP 25; 
Olympus Optical Co. Ltd., Tokyo, Japan) and connected to a com‐
puter. For histomorphometric analysis, all measurements were taken 
by dedicated image analysis software (Olympus Image Analysis 
System; Olympus Soft Imaging Solutions GmbH, Münster, Germany). 
Whole implant surfaces were captured in four or five contiguous and 
consecutive microscopic fields. The bone‐implant contact percent‐
age was determined by calculating the length of the attached bone‐
implant surface (osseointegrated surface) divided by the whole 
surface perimeter at 100× magnification. Additionally, the percent‐
age of new bone, old bone, and soft tissue areas was also calculated 
at the bone‐implant interface according to a previously reported 
classification (Zone 1: the area within threads and Zone 2: the area 
outside of the threads) (Plecko et al., 2012; Stübinger et al., 2013). A 
fluorescence microscope (Olympus DP72, Tokyo, Japan) was used 
to investigate the administered fluorochrome labels. All evaluations 
and measurements were taken by two independent examiners sepa‐
rately, and the mean value was recorded as final.

2.9 | Statistical analysis

Nonparametric tests were indicated due to the less number of 
animals and the non‐Gaussian distribution as determined by the 
Shapiro–Wilk normality test (p = 0.022). Descriptive statistics con‐
sisting of the mean, standard deviation (SD), median, interquartile 
range (IQR), range (minimum–maximum), and 95% confidence in‐
terval (CI) were calculated. For the Ra, Rz, Rq, RSm, ITV, RTV, RFA 
and BIC% parameters, the Kruskal–Wallis test was used to deter‐
mine any significant differences between the groups. Dunn’s post 
hoc test was used for the pair‐wise comparison of Ra, Rq, Rz, and 
ITV values. Wilcoxon signed‐ranks test was used for the compari‐
son of RFA (baseline vs. 3rd week and baseline vs. 8th week), RTV 
(3rd week vs. 8th week), and BIC% (3rd week vs. 8th week) values 
measured in the healing intervals. Spearman correlation analysis was 
used to evaluate the relationship between quantitative variables of 
ITV, RTV, RFA, and BIC%. Any p value below 0.05 was accepted as 
statistically significant. All statistical analyses were performed by a 
commercial software package (NCSS‐Number Cruncher Statistical 
System, Kaysville, UT, USA).

3  | RESULTS

3.1 | In vitro findings

In the low‐magnification (×300) SEM images, the SO surface 
topographical features resembled that of the SLA surface, with 
more prominent protrusions than the SLA surface. Under high 
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magnification (×8,000), spot‐like submicron structures were also 
observed on the SO surface. Grain boundary features consisting 
of several spherical pits attached together were discernible in the 
SOF surface under low magnification. These structures were fur‐
ther investigated under high magnification, and previously observed 
structures were identified with hollow‐like microstructures with 
different sizes and shapes (Figures 3 and 4). Statistically significant 
differences were present in all of the surface roughness parameters 
(p = 0.001, 0.003 and 0.001, for Ra, Rq and Rz values, respectively). 
The highest Ra values were observed in the SO group 1.12 μm (IQR: 
0.04), whereas the lowest were in the SOF group 0.55 μm (IQR: 
0.05). The SLA surface presented a moderate Ra value 0.87 μm (IQR: 
0.08); (Figure 5). The profilometry results of screw‐type dental im‐
plants were resembling that of the AFM measurement values but the 
differences were statistically not significant in any of the parameters 
(Table 1). EDS revealed the presence of Ti, Al, C, O and N elements 
on all surfaces. XPS detected no Al element at the SOF surface. The 
highest percentage of O and the lowest percentage of C atoms were 
detected at the SLA surface. A high percentage of C atoms was ob‐
served on the SO and SOF surfaces (Figure 6, Table 2).

3.2 | In vivo findings

Surgical intervention and placement of the implants were completed 
uneventfully. All animals recovered quickly and could walk immedi‐
ately after the surgery. A mild ecchymosis was noticed in the pelvic 
area of one sheep and it healed without any problems.

3.3 | ITV measurements

The differences in the ITVs between the groups were statisti‐
cally significant (p < 0.001). The SOF group revealed the lowest 
ITV 15 N/cm (IQR: 0), with statistically significant differences be‐
tween the remaining groups (18 N/cm, IQR: 0; p = 0.001 and 20 N/
cm, IQR: 5; p < 0.001 for the SO and SLA groups, respectively; 
Figure 7).

3.4 | RFA measurements

The differences in the baseline RFA values between the groups were 
statistically significant (p = 0.031); the SO group revealed the highest 

F I G U R E  3   Scanning electron 
microscope images of (a and b) 
sandblasted and acid‐etched SLA, (c and 
d) sandblasted and thermally oxidized 
SO, and (e and f) sandblasted, thermally 
oxidized and acid‐etched SOF surfaces. 
Submicron grains were observed on 
the SO and SOF surfaces on the 2 μm 
micrograph scale (arrows). Left and the 
right columns display the lower (×300) 
and higher (×8,000) magnifications, 
respectively

(a) (b)

(c) (d)

(e) (f)
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RFA values 55 ISQ (IQR: 9) with statistically significant differences 
from the SLA group (p = 0.035). The change in the RFA values from 
the baseline to the 3rd week was statistically significant only in the 
SOF group (p = 0.08). The change in RFA values from the baseline to 
the 8th week was also statistically significant in all groups, with an 
almost identical final value of 60 ISQ, Table 3, Figure 8.

3.5 | RTV measurements

The differences in the RTV values between the groups were statisti‐
cally significant both at the third and at the eighth weeks of healing 
(p = 0.006 for both time points). The highest mean RTV in the third 
week was observed in the SLA group 73.5 N/cm (IQR: 24.5), with 
statistically significant differences from the SOF group (p = 0.004). 
At the eighth week of healing, the RTV value of the SOF group 51 N/
cm (IQR: 15.1) was lower than those of the SLA and SO groups, for 

which the differences were also statistically significant (p = 0.029 
for SOF vs. SLA and p = 0.010 for SOF vs. SO) (Table 4, Figure 9).

3.6 | Histology and histomorphometry

3.6.1 | Light microscopic observations

Osseointegration was observed in all implant sections, and there 
were no signs of inflammation, necrosis, or foreign body reaction. 
Due to the absence of inflammatory cells in the histologic sections, 
a tartrate‐resistant acid phosphatase staining was not necessary. An 
active osteoid deposition was discernible around SLA and SO groups 
after 3 weeks. However, some gaps were detected in the bone‐im‐
plant interface of the SOF group. At the 3rd week of healing, primary 
osteons were more prominent in the SLA and SO groups, whereas 
the healing of the surrounding bone appeared to be delayed in the 

F I G U R E  4  Three‐ and two‐dimensional images of the (a) SLA, (b) SO and (c) SOF surfaces revealed by the atomic force microscope (AFM)

F I G U R E  5   Box‐whisker plots showing median, quartile, and outlier values for the implant roughness values (Ra, Rz, Rq)
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SOF group. After 8 weeks of healing, active remodeling of the os‐
seointegrated bone interface was observable in the SLA and SO 
groups, with a clear demarcation line between the host and the new 
bone in the SO group. An organized bone matrix with the primary 
osteons was visible at the 8th week of SOF group. As compared to 
the 3rd week, the deposition of lamellar bone was clearly observable 
in all groups at the 8th week (Figure 10).

3.6.2 | Fluorescence microscopy observations

The highest intensity of fluorochrome staining was observed in 
the SLA group for both healing intervals and in the bone‐implant 
interface (Z1) and the surrounding bone area (Z2). The SO and SOF 
groups demonstrated a milder staining, with the last one displaying 
no staining in the Z2 area in the 3rd week. By the end of the 8th 
week, light green staining, which indicates early‐term healing, was 
observed inside the screws (Z1) of the SOF group. Light‐yellow and 
red‐colored stain layers were indicative of active mineral deposition 
and remodeling ongoing in the 6th and 8th weeks of healing. The 
fluorescent images were in accordance with the histologic results; 
a lower intensity of fluorochrome staining was observed in the SOF 
group for both time points (Figure 11).

3.6.3 | Histomorphometric findings

The differences in the BIC% values between the groups at the 3rd 
week were statistically significant (p = 0.016). The highest BIC% was 
measured in the SO group 40.97% (IQR: 25.46) with no statistically 
significant differences from the SLA surface 30.19% (IQR: 15.31). The 
SOF group revealed the lowest BIC% value 14.79% (IQR: 10.5), with 
a statistically significant difference from the SO group (p = 0.015). A 
statistically significant change in the BIC% from the 3rd to 8th weeks 
of healing was present in all groups, with a similar BIC% between the 
SLA and SO groups (56.63%, [IQR: 17.49], 51.94%, [IQR: 10.03], re‐
spectively). The lowest BIC% was measured in the SOF group at the 
8th week 37.27% (IQR: 31.19), but the differences among the other 
groups were not statistically significant (Figure 12, Table 5). The new 
bone that formed at both the implant interface (Zone 1) and the sur‐
rounding bone compartment (Zone 2) displayed no significant dif‐
ferences between groups throughout the healing periods (Table 6).

3.6.4 | Correlation of the study parameters

No statistically significant correlation was found between any of the 
aforementioned variables, except a positive correlation of RTV and 
BIC% measured in the 8th week in the SLA (r = 0.91, p < 0.005) and 
SOF groups (r = 0.81, p < 0.049).

4  | DISCUSSION

In this study, the topographical, chemical, and osseointegration 
characteristics of the sandblasted thermally oxidized surface (SO) TA
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and its chemically modified surface (SOF) were compared against 
the well‐established SLA surface. Real‐sized implant fixtures were 
tested on a sheep pelvis model as the use of miniature implants on 
small animal models had demonstrated conflicting results, especially 
in the biomechanical tests due to the restricted surface area (Pearce, 

Richards, Milz, Schneider, & Pearce, 2007; Yi et al., 2015). The sheep 
pelvis has the advantage of mimicking the mandibular bone and is 
free from the additional healing risks involved in the oral environ‐
ment (Ernst et al., 2015; Plecko et al., 2012).

According to the surface profilometry and AFM, the highest 
surface roughness was present in the SO group (1.12 μm), whereas 
the SOF group presented a relatively smother roughness (0.55 μm), 
probably as a result of the final HF acid etching. Hence, the absence 
of any acid application and the growth of the oxide layer during 
thermal oxidation may have been accompanied by additional sur‐
face roughening yielding higher roughness values in the SO group 
(Guleryuz & Cimenoglu, 2004). Despite the use of a formerly doc‐
umented methodology for SLA surface preparation, implants in 
the SLA group yielded an Ra value (0.87 μm); slightly lower than 

F I G U R E  6  Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis of the SLA, SO and SOF 
surfaces

TA B L E  2  Atomic percentage as determined by the X‐ray 
photoelectron spectroscopy survey

SLA (%) SO (%) SOF (%)

O1s 44.25 31.25 32.33

C1s 27.60 47.94 44.84

Ti2p 6.25 1.98 2.66

Al2p 11.89 4.94 NA
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previously reported (1–1.5 μm) (Salou, Hoornaert, Louarn, & Layrolle, 
2015). Nevertheless, these differences could be attributed to the 
dissimilarity in the employed equipment and relevant measurement 
methodology (Shalabi, Gortemaker, Hof, Jansen, & Creugers, 2006).

Subtle surface irregularities, however, had a pronounced influ‐
ence on the primary stability of the placed implants. In general, the 

obtained ITV values were low in all groups (<21 N/cm). Notably, the 
ITV is directly affected by the macrogeometry of the implant body 
(Johansson, Bäck, & Hirsch, 2004), and current experimental im‐
plants with a reduced thread profile may have contributed to the re‐
corded poor ITV measurements. Hence, the surface with the lowest 
Ra values (smoother surface of the SOF group) resulted in a very low 

F I G U R E  7   Box‐whisker plots showing median, quartile, and 
outlier values for the insertion torque (ITV) measurements

RFA SLA SO SOF

Baseline ISQ Mean (SD) 42.28 (13.48) 52.39 (6.06) 47.36 (6.93)

Median (IQR) 47.0 (31.0) 55.0 (9.0) 49.0 (10.0)

Min–Max 22–58 43–59 32–57

%95 CI 35.58–48.98 49.38–55.40 43.91–50.80

ISQ at the 3rd 
week

Mean (SD) 61.11 (7.51) 56.22 (5.76) 62.56 (5.29)

Median (IQR) 63.0 (13.0) 55.0 (8.0) 63.0 (17.0)

Min–Max 52–69 49–66 53–70

%95 CI 55.34–66.88 51.79–60.65 58.49–66.62

ISQ at the 8th 
week

Mean (SD) 59.33 (11.24) 60.22 (5.54) 59.00 (4.74)

Median (IQR) 60.0 (12.0) 60.0 (5.0) 60.0 (3.0)

Min–Max 35–70 51–67 48–65

%95 CI 50.70–67.97 55.96–64.48 55.35–62.65

TA B L E  3   Descriptive statistics of the 
measured resonance frequency analysis 
(RFA) values

F I G U R E  8   Box‐whisker plots showing median, quartile, 
and outlier values for the resonance frequency analysis (RFA) 
measurements

RTV (N/cm) SLA SO SOF

3rd week Mean (SD) 29.84 (8.40) 39.93 (16.14) 15.89 (5.40)

Median (IQR) 73.5 (24.5) 45.9 (9.0) 35.0 (20.0)

Min–Max 29–90 30–64 22–50.4

%95 CI 49.6–80.62 37.77–52.87 28.03–43.81

8th week Mean (SD) 51.75 (10.89) 53.23 (13.18) 39.23 (15.58)

Median (IQR) 70.0 (20.0) 79.0 (23.0) 51.0 (15.1)

Min–Max 45–130 30–115 27–67

%95 CI 56.14–100.31 60.79–97.88 38.68–59.75

TA B L E  4   Descriptive statistics of the 
measured removal torque values (RTVs)
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ITV (15 N/cm). Based on the fact that the early implant failures are 
associated with a low ITV (Johansson et al., 2004; Walker, Morris, 
& Novotny, 2011), any surface with an Ra value lower than 0.8 μm 
may be rendered unfavorable in terms of primary implant stability. 

Despite the low ITV values, a sufficient level of ISQ (≥47 ISQ) was 
achieved upon implant insertion. A significant increase in the final 
ISQ readings (8th week), compared with the baseline values, was 
present in all groups. The rapid increase in the ISQ value (baseline to 
the 3rd week), which is desirable in the clinical scenario, was present 
in the SOF group only. The submicron features that emerged after 
the HF acid application in this group may have provided such an ef‐
fect (Mendonça et al., 2008). This positive effect of the HF acid was 
also confirmed clinically; Geckili, Bilhan, and Bilgin (2009) followed 
the changes in RFA values of TiO2 blasted implants with and with‐
out HF treatment in 27 patients. RFA values for the HF‐modified 
implants were stable during the initial 24 weeks (p > 0.05), whereas 
the control group with a similar surface to the SLA group showed 
a statistically significant decrease in the RFA values from the first 
week to the sixth week postplacement (p < 0.05). In this study, it 
was noteworthy that the measured RFA values were inconsistent 
with the consequent biomechanic and histomorphometric results, as 
has been occasionally reported in other studies (Akkocaoglu, Uysal, 
Tekdemir, Akca, & Cehreli, 2005; Aparicio, Lang, & Rangert, 2006).

Controlled unscrewing of the implant body until breakage of the 
bone‐implant interface (used as RTV in this study) is routinely used 
in the comparison of the osseointegration strength among different 

F I G U R E  9   Box‐whisker plots showing median, quartile, and 
outlier values for the removal torque test (RTV) measurements

F I G U R E  1 0   Histologic view of the 
healing around the investigated surfaces. 
(a) Osteoid layer deposition between the 
recipient bone and the implant surface 
(arrow) was evident in the SLA group 
at the 3rd week. (b) Osseointegration 
of the SLA surface was observed at the 
8th week. (c) Bone matrix deposition 
(dark blue staining) was evident on the 
SO surface at the 3rd week. (d) New 
bone matrix deposition was completed 
with a clear demarcation line between 
the host and the new bone (arrow). (e) 
A line of osteoid deposition without 
contact with the implant surface (arrow), 
and (f) an organized bone matrix with 
primary osteons (arrow) was visible at 
the 8th week. Black areas are the implant 
bodies. (Toluidine blue staining, original 
magnification ×200)

(a) (b)

(c) (d)

(e) (f)
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surfaces (Elias, Lima, Valiev, & Meyers, 2008). In previous studies, 
SLA implant surfaces were shown to achieve a high reverse torque 
resistance at earlier time points of the healing period (Abdel‐Haq, 
Karabuda, Arisan, Mutlu, & Kurkcu, 2011; Ou et al., 2016). Findings 

in this study are also confirmatory, and an RTV of 73.5 N/cm was 
achieved in the SLA group at the 3rd week. Unfortunately, the SO 
and SOF groups revealed a poor RTV in the same period (<50 N/cm). 
Late‐term RTV values were approximately 80 N/cm in the SLA and 
SO groups, and the SOF group did not demonstrate any recovery 
from the initially low RTV value. These findings in the SOF group 
are contradictory to the previous reports, where the HF‐modified 
implants demonstrated a firmer bone anchorage (39% BIC) and a 
relevantly high RTV (85 N/cm) after 4 weeks of healing (Cordioli, 
Majzoub, Piattelli, & Scarano, 2000; Ellingsen et al., 2004). The 
cause of this difference is attributable to the lack of obvious topo‐
graphical changes as a result of fluoride modification on the TiO2 
grit‐blasted implants (Cooper et al., 2006), whereas its application 
on the thermally oxidized surface caused a significant decrease in 
the roughness as observed in this study. In the recent literature, no 
information is available regarding the RTV of thermal oxidation or 
adjunct HF application. However, based on the present findings, it 
can be concluded that thermal oxidation followed by HF acid ap‐
plication appears to provide no additional biomechanical advantage 
over the SLA.

In an early study, thermal oxidation of the Ti implants at 280°C 
for 3 hr yielded a 1.6‐ to 5.3‐fold bone in‐growth compared to the 

F I G U R E  11   Fluorescence 
microscopic view of the bone deposition 
in the SLA, SO and SOF groups. (a) 
Highest intensity of fluorochrome 
staining was evident on the SLA 
surface in the 3rd week. (b) A high 
level of fluorochrome staining was also 
discernible in the SLA group at the 8th 
week. (c) Staining at the bone‐implant 
interface was visible in the SO group. (d) 
High magnification revealed intense red 
and orange staining of osteons within 
the implant threads of the SO group. (e) 
A poor fluorochrome staining in the SOF 
group at the 3rd week was indicative of 
a delayed healing. (f) Intense light‐green 
staining in the 8th week of healing 
was indicative of a delayed healing in 
the SOF group. Light green (Calcein 
Green), light‐yellow (Oxytetracycline) 
and red coloured (Alizarin Red) areas 
corresponds to the Fluorochrome 
staining at 3rd, 6th and the 8th week 
(original magnification a and d ×200, c 
×40, b, e and f ×400)

(a) (b)

(c) (d)

(e) (f)

F I G U R E  1 2   Box‐whisker plots showing median, quartile, and 
outlier values for the measured bone‐implant contact percentages 
(BIC%)
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machined implants (Hazan & Oron, 1993). Bodelon et al. (2016) 
also examined the bone response of thermally oxidized implants 
in a rabbit model, where oxidation was executed at 700°C for 
1 hr, and a final BIC% of 55.37% was achieved after 30 days of im‐
plant placement. Rough‐surfaced control implants demonstrated 
a BIC% of 48.01%. The authors concluded that an increase in the 
micro‐ and submicron scale roughness compatible with the cellular 
dimensions may lead to an enhanced BIC%. Confirmatory results 
were also observed in the present investigation, where the oxi‐
dation was accomplished at 650°C for 12 hr, the highest BIC% in 
the early healing period was similar between the groups. The SOF 
group, once more, demonstrated a significantly poorer outcome. 
Contrary to this outcome, Berglundh, Abrahamsson, Albouy, and 
Lindhe (2007) reported that HF acid application (fluoride modified) 
on the TiO2 grit‐blasted surface revealed rapid bone healing and 
a relatively high BIC% (57.8% SD: 14.2) after 2 weeks of implant 
placement. In the recent investigation, a similar BIC% was achieved 
at the end of the 8th week in the SOF group, indicating the unsuit‐
ability of HF acid on the thermally oxidized surface. The later term 
BIC% was akin for all groups and was agreement with other studies 
reporting a BIC% between 35% and 60% (AlFarraj Aldosari et al., 
2014; Simion, Benigni, Al Hezaimi, & Kim, 2015). The outcomes 
were also similar for the remaining parameters such as new bone 
inside (Z1) and outside the threads (Z2). Moreover, for the early 
healing point (3rd week), the osteogenetic activity traced by the 
fluorochrome labeling revealed a higher staining in the SLA group, 
whereas a similar intensity of staining was evident in the later term 
(8th week) in the SO and SOF groups. The resultant surface chem‐
istry of the implants may also have influenced these results. Al, C, 
and O atoms, which were defined to be important for the biologic 
response, were diversely found in the SLA, SO, and SOF groups. 
According to the XPS analysis, the cleanest surface was the SLA, 
with the highest O and the lowest C percentage. The nonbiocom‐
patible and toxic element Al, which was absent in the SOF group, 
did not exert any positive effect for any of the investigated param‐
eters (Lincks et al., 1998; Puleo & Huh, 1995). A similar finding was 
reported in an in vitro study, where peroxide treatment was used 
to decrease the Al percentage on thermally oxidized Ti surfaces. A 
cellular attachment was found to be correlated with the Al atomic 
percentage, specifically (MacDonald et al., 2004). Taken together 
with the present finding, it can be concluded that a total absence 

of Al atoms may have a negative influence on osseointegration 
dynamics.

The absence of a correlation in between the investigated param‐
eters should be concerned, especially for the RFA. Despite the ob‐
tained measurements at three distinct time points, no correlations 
were found for any of the parameters, and researchers should be 
aware of this incompetency, which has been previously reported 
(Akkocaoglu et al., 2005; Aparicio et al., 2006). However, a direct 
comparison of the present findings and previous reports is not fea‐
sible due to the employment of different methodologies in thermal 
oxidation and HF application.

5  | CONCLUSION

Within the limits of this study, it can be concluded that adjunct HF 
etching on the thermally oxidized Ti surface may not provide any ad‐
ditional beneficial influence with respect to osseointegration param‐
eters compared to the SLA. The minor positive findings observed in 
the SO and SOF groups require further investigation to clarify the 
mechanisms of thermal oxidation or HF acid etching on Ti surfaces.
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BIC% SLA SO SOF

3 weeks Mean (SD) 29.84 (8.40) 39.93 (16.14) 15.89 (5.40)

Median (IQR) 30.19 (15.31) 40.97 (25.64) 14.79 (10.5)

Min–Max 20.05–41.24 14.82–57.38 9.96–22.96

%95 CI 21.02–38.65 22.99–56.86 10.22–21.56

8 weeks Mean (SD) 51.75 (10.89) 53.23 (13.18) 39.23 (15.58)

Median (IQR) 56.63 (17.49) 51.94 (10.03) 37.27 (31.19)

Min–Max 35.21–62.32 33.77–74 20.61–57.35

%95 CI 40.32–63.18 39.39–67.06 22.87–55.57

TA B L E  5   Bone‐to‐implant contact 
(BIC) percentage in the healing stages
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