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The Web of Things (WoT) is a concept that aims to create a network of intelligent devices capable of remote 

monitoring, service provisioning, and control. Virtual and Physical Internet of Things (IoT) gateways facilitate 

communication, processing, and storage among social nodes that form the social Web of Things (SWoT). 

Peripheral IoT services commonly use device data. However, due to the limited bandwidth and processing 

power of edge devices in the IoT, they must dynamically alter the quality of service provided to their connected 

clients to meet each user’s needs while also meeting the service quality requirements of other devices that 

may access the same data. Consequently, deciding which transactions get access to which Internet of Things 

data is a scheduling problem. 

Edge-cloud computing requires transaction management because several Internet of Things transactions 

may access shared data simultaneously. However, cloud transaction management methods cannot be em- 

ployed in edge-cloud computing settings. Transaction management models must be consistent and consider 

ACIDity of transactions, especially consistency. This study compares three implementation strategies, Edge 

Host Strategy (EHS), Cloud Host Strategy (CHS), and Hybrid BHS (BHS), which execute all IoT transactions 

on the Edge host, the cloud, and both hosts, respectively. These transactions affect the Edge hosts as well. 

An IoTT framework is provided, viewing an Internet of Things transaction as a collection of fundamental 
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and additional subtransactions that loosen atomicity. Execution strategy controls essential and additional 

subtransactions. 

The integration of edge and cloud computing demonstrates that the execution approach significantly affects 

system performance. EHS and CHS can waste wireless bandwidth, while BHS outperforms CHS and EHS in 

many scenarios. These solutions enable edge transactions to complete without restarting due to outdated IoT 

data or other edge or cloud transactions. The properties of these approaches have been detailed, showing that 

they often outperform concurrent protocols and can improve edge-cloud computing. 

CCS Concepts: • Information systems → Data management systems ; 

Additional Key Words and Phrases: Concurrency control, transactional services, mobile agents, edge-cloud 

computing, execution framework 
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 INTRODUCTION 

s the number of devices connected to the Internet of Things (IoT) grows, the need for com-
uting at the network’s edge will increase. Analyzing data closer to its source has many benefits,
ncluding lessening the load on the internet, boosting privacy and security, and decreasing the
verall cost of data management. 

When it comes to gathering massive amounts of data and performing analysis on that mountain
f information to extract insights that can be transmitted back to the devices closer to the edge,
he cloud will continue to play a crucial role. By integrating edge and cloud computing, you can
etter manage and analyze your data, which can significantly increase the value of your Internet
f Things systems. Even if decentralized edge networks offer certain advantages in terms of speed
nd scalability, the cloud often outperforms them in terms of cost [ 1 ]. 

The cloud will be responsible for delivering strategic and high-level insights to improve the
peration of these edge devices, while edge devices may be responsible for undertaking real-time
unctional analysis [ 2 ]. 

The frontend of an IoT data management system is live and real-time, interacting with the con-
ected IoT items and sensors, while the backend handles the large-scale storage and in-depth
nalysis of IoT data [ 3 ]. This categorization originates from the IoT data lifecycle that has been ad-
ressed in the previous sections. Transmission of query requests and results to and from the many
ensors and intelligent objects is a crucial part of the frontend of the data management system.
he back end is quite storage-intensive due to the necessity of not only performing analysis and
dditional thorough searches, but also storing massive amounts of data created for later processing.

The storage components may be located in the system’s backend, but they are considered “on-
ine” because of their regular interaction with the system’s frontend and their need for frequent up-
ates. Autonomous edges in the lifecycle might be viewed as placing more value on communication
han storage because of the speed with which they react to specific inquiries. Existing DBMS are
enerally storage-centric, while the data management architecture envisioned in Figure 1 is more
oncerned with data access and manipulation. Most information in traditional database manage-
ent systems comes from static and constrained sources. After proper normalization and scalar-

zation, this data is relationally stored. Queries are used to obtain customized “summary” views of
he system or to modify individual entries inside the database. Whenever new information or data
CM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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Fig. 1. Data-management-architecture-for IoT transactional services. 
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eeds to be added to the database, insertion queries are used to do so. Typically, query operations
re executed locally, with only the costs of processing and interim storage being incurred. 

Data integrity is preserved while using a transaction management strategy that ensures the
CID characteristics are met. If the database is split up among multiple servers, we will still run

he queries and manage the dispersed transactions. A key tenet of database design is the “trans-
arency principle,” which requires all data in the database to be accessible and visible, and this
orms the basis for the execution of distributed queries. A two-phase commit process is required
n order to ensure that the ACID characteristics are met. Under this tenet, dispersed queries must
e carried out adhering to the notion of transparency. Countless data sources, which are only
rowing in quantity, completely alter the picture in IoT systems. Sensors, RFIDs, embedded sys-
ems, and mobile devices are all examples of such data collectors. Data stored in IoT data stores is
onstantly streaming from a wide variety of “Things,” and the needs of the queries are both more
requent and more varied than those submitted to traditional DBMSs. In order to assure scala-
ility and provide more immediate processing functionality, it may be necessary to report and
ggregate data in a hierarchical fashion. Unstructured and flexible forms, which can accept a wide
ange of data types and complex queries, can replace the inflexible relational database design and
elational normalization technique. Optimizers still base their decisions on well-defined and rigid
chemas, even if distributed DBMSs optimize queries according to communication considerations.
owever, this might not hold true in the Internet of Things, where the constant influx of new data

ources and the importance of contextual, real-time information make for a challenging environ-
ent for query optimizers. Distributed database management systems make it challenging, if not

mpossible, to guarantee the transparency criteria that are imposed on IoT data management
ystems (DBMSs) . Furthermore, it is possible that with the IoT, transparency is not essential be-
ause unique applications and services can necessitate knowledge of both location and context.
here are also obstacles for more globalized areas, even if it is possible to control the process of
rocessing transactions while still keeping ACID properties in contained IoT spaces (subsystems).
n spite of this, IoT data management systems have not yet addressed the new challenge presented
ACM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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y IoT data sources [ 4 , 5 ]. The difficulty here is in figuring out how to incorporate the information
hat is produced by IoT data sources into the established data repository. 

The most significant findings and conclusions of this paper are summarized as follows: 

• We have proposed a framework for the execution of IoTT processing and are researching
the impact of mobility on the repercussions of the different execution strategies for IoTT
processing. 

• We’ve built a model to represent the transactional system, and it includes support for up-
dates and the Internet of Things. The model provides a solid foundation for studying how
different concurrency control techniques fare in real-world scenarios. 

This paper’s subsequent sections will be provided as follows. In the first section, we survey prior
esearch on transactional services enabled by edge-cloud computing infrastructure. The transac-
ion processing environment of the Internet of Things is explored in Section 3 . Section 4 explains
he infrastructure required to support transactional services at the edge of cloud computing. In
ection 5 , we make use of the fact that the vast majority of IoTT models share a relaxation of
he ACID properties. This allows us to experiment with various execution strategies to model the
mpact of mobility and disconnections on the processing of IoT transactions, and then debate the
esults. This section provides a high-level overview of our work and a description of the scientific
ontributions made. 

 RELATED WORKS 

n recent years, the Internet of Things (IoT) has permeated virtually every aspect of modern life,
rom cities and homes to colleges and businesses to farms and hospitals [ 6 –8 ]. Numerous capabil-
ties, including data production and consumption and the use of internet services, enhance daily
ife and activities all around the world through the IoT environment [ 9 ]. Numerous applications
re executed in the IoT ecosystem, and it is through these programs that the infrastructure and
mart services are delivered [ 10 ]. As the needs of the users increase, the distribution of novel apps
or monitoring, managing, and automating human activities will increase [ 11 , 12 ]. In addition, IoT
pplications leverage cloud computing to provide necessary composite services by composing ex-
sting atomic services to back up service-based apps [ 9 , 10 ]. Users in a wide range of fields utilize
pps that leverage smart devices in their daily lives, and these apps are increasingly being adapted
or usage in IoT contexts. There are many advantages to using IoT applications, such as improved
ecision-making, management, and monitoring of cloud-based resources in the environment [ 13 ].
Although different application domains are motivated by different factors, they all share the

ommon goal of providing smart services to enhance the quality of human life [ 14 , 15 ]. 
It’s important to remember that mobile computing has its own set of constraints, such as spo-

adic connectivity, short battery life, low bandwidth communication, and limited storage space,
hile making a purchase. Reducing the likelihood of network outages is crucial for mobile com-
uting. Transactions done on the central and peripheral hosts must be consistent, and this can only
e achieved by operations on shared data. If we want to optimize concurrency and minimize com-
unication costs, we need to make sure that the transaction execution on the stationary or edge

osts blocks as little as feasible. Authenticating IoT Hardware The transactions must be designed
o be locally autonomous on the edge host so that they can be completed and committed even if the
etwork connection is temporarily lost. Mobile computing [ 16 ] uses semantic-based transaction
rocessing models [ 17 ] that rely on commutative activities to boost concurrency. These strategies
ecessitate either extensive database caching or the maintenance of many copies of certain data
bjects. Semantic-based transaction processing in mobile databases is made easier by the ability
CM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 



Transactional Services for Concurrent Mobile Agents over Edge/Cloud Computing 36:5 

t  

a  

t  

w  

w  

c  

c  

d  

a  

o  

w
 

p  

v  

p  

h  

a  

t  

c  

b  

t  

a  

s
 

a  

i  

p  

t  

t  

n  

t  

b
 

p  

s  

a  

f  

s  

t  

t
 

i  

p  

c  

a  

m  

h  

c  
o partition data objects into smaller parts [ 18 ]. The method breaks down the data into manage-
ble pieces. The inability to share information between silos means that data fragments must have
heir own independent caching systems and frequent upgrades. In response to the MU’s request,
e send across a chunk of the data object. After the transaction is finalized, the peripheral hosts
ill send the information back to the hub. A reorderable item is one that can have its constituent

omponents assembled in any order. The fragmentation of the system is particularly useful for
ertain kinds of data objects, such as sets, stacks, and queues. To facilitate the restoration proce-
ure, transaction proxies are included in [ 19 ]. In addition to the principal transaction, each MU
lso sends a proxy transaction to the base station at the same time. If you make a change to the
riginal transaction, the proxy will be updated immediately. From time to time, a proxy transaction
ill support the work of an edge host’s computational nodes. 
Definition: “a model for enabling ubiquitous, convenient, on-demand network access to a shared

ool of configurable computing resources (e.g., networks, servers, storage, applications, and ser-
ices) that can be rapidly provisioned and released with minimal management effort or service
rovider interaction” [ 20 ]. The falling cost and rising availability of storage and processing power
ave made feasible a new computing model in which virtualized resources can be rented on an
s-needed basis and offered as general utilities. Companies like Amazon, Google, Facebook, and
he like, have migrated to this approach of offering services via the internet because of the finan-
ial and technical benefits [ 21 ]. Applications at the network’s edge today ingest data generated
y things at a scale and variety never before seen in human history. However, there are certain
ypes of applications that may not work well with cloud-based service models due to factors such
s the necessity for extremely fast reaction times, the need to access sensitive local data, or the
heer volume of data they produce. Edge computing could be used instead in those applications. 

As a new paradigm, edge computing (also called "fog computing") involves placing large
mounts of computing and storage resources near the periphery of the Internet, in close prox-
mity to endpoints such as mobile devices, sensors, actuators, and machines. Edge computing is
erformed at or near the points of origination of data [ 22 ], or where choices or interactions with
he physical environment are being made or experienced with little latency. It can handle informa-
ion coming from the cloud as well as information coming from endpoints and other parts of the
etwork. In most contexts, the phrase “fog computing” is used to refer to the concept of “multi-
iered edge computing,” which refers to the presence of multiple tiers of compute infrastructure
etween end devices and cloud services. 
To put it simply, an edge device is any type of computing or networking resource located on the

eriphery of a network, between the end devices themselves and the central data storage facilities,
uch as the cloud. Computing at the edge involves two-way data flow, with the end device serving
s both a consumer and a producer. The devices at the network’s edge not only make requests
or services and data from the Cloud, but also perform computer functions such as processing,
toring, caching, and load balancing on data that is transmitted to the Cloud [ 23 ]. In other words,
his doesn’t rule out the possibility of end devices hosting computation on their own, either on
heir own or as part of a distributed edge computing platform. 

The literature outlines several distinct models for Internet of Things Transactions (IoTT) ,
ncluding the centralized model, decentralized model, hybrid model, blockchain model, peer-to-
eer model, and edge computing model. In addition to the existing columns for model name, ar-
hitecture, communication protocol, this table has added two more columns for application and
dvantages. The centralized model is characterized by a centralized architecture and supports com-
unication protocols such as HTTP, MQTT, and CoAP. This model is commonly used in smart

omes and industrial automation due to its ease of deployment and cost-effectiveness. The de-

entralized model is characterized by a decentralized architecture and supports communication
ACM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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Table 1. Taxonomy for Internet of Things Transactions (IoTT) Models 

Model 
Name 

Architecture Supported 
Devices 

IoTT 

Transactions 
Model 

Advantages Applications 

Centralized Centralized 
server 

Low-end 
devices 

Publish/Subscribe – Easy to manage and 
control Centralized 
processing and storage 

Smart home 
automation, 
Industrial monitoring, 
Healthcare 

Distributed Peer-to-peer 
network 

Low-end to 
high-end 
devices 

Peer-to-peer – Low latency 
Distributed processing 
and storage 

Smart grid, Smart 
traffic control, 
Military applications 

Hybrid Combination of 
centralized and 
distributed 

Low-end to 
high-end 
devices 

Publish/Subscribe 
and Peer-to-peer 

– Scalable 
– Fault tolerant 
– Efficient resource 

utilization 

Smart city, 
Agriculture, Logistics 

Fog 
Computing 

Cloud and edge 
computing 

Low-end to 
high-end 
devices 

Hybrid (Pub- 
lish/Subscribe and 
Peer-to-peer) 

– Low latency 
– Energy efficient 
– Decentralized 

processing and storage 

Autonomous 
vehicles, Smart 
healthcare, Industrial 
Internet of Things 

Blockchain- 
based 

Distributed 
blockchain 
network 

High-end 
devices 

Distributed and 
secure 
transactions 

– Transparency and 
trust 

– Immutable and 
tamper-proof 

– Decentralized 
processing and storage 

Supply chain 
management, 
Financial services, 
Asset tracking 
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rotocols such as HTTP, MQTT, and CoAP. This model is commonly used in healthcare and energy
anagement applications due to its low latency and high scalability. The hybrid model is a combi-
ation of centralized and decentralized architectures, and supports communication protocols such
s HTTP, MQTT, and CoAP. This model is commonly used in agriculture and smart cities due to its
exibility in deployment and ability to offer benefits of both centralized and decentralized models.
he blockchain model is characterized by a decentralized architecture with blockchain technology
nd supports communication protocols such as MQTT and CoAP. This model is commonly used
n supply chain management and financial transactions due to its high level of security and trans-
arency. The peer-to-peer model is characterized by a decentralized peer-to-peer architecture and
upports communication protocols such as HT TP, MQT T, and CoAP. This model is commonly
sed in personal devices and wearables due to its privacy features and reduced latency. 
The edge computing model is characterized by a decentralized architecture with edge com-

uting and supports communication protocols such as HTTP, MQTT, and CoAP. This model is
ommonly used in real-time monitoring and video surveillance applications due to its ability to
educe network traffic and latency. Table 1 provides a comprehensive overview of several distinct
odels for IoTT transactions. By highlighting the different architectures, communication proto-

ols, applications, and advantages of each model, this table can help organizations make informed
ecisions when selecting a model for their IoTT transactions. 

 TRANSACTIONAL CONTEXT IN IoT 

onnectivity, networking, and communication protocols used by these web-enabled devices are
ll determined by the specific IoT applications being used. 

One of the main goals of IoT applications is to improve QoS metrics. Intelligent services in
oT applications should fulfill the requirements of the user. The aforementioned quality-of-service
arameters (such as security, cost, service time, energy usage, reliability, and availability) should
e addressed by these offerings. 
CM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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The expanding edge computing capabilities made available by the Internet of Things (IoT) and
he impending broad deployment of 5G cellular technology necessitates increased dispersal of
latform components to achieve higher degrees of scalability. 
With 5G networks and the proliferation of IoT devices, hybrid edge-cloud solutions provide

ncreased benefits for data collection and processing. 
Edge devices (those placed near the point of data collection or access) and the cloud work to-

ether in this architecture to handle data (which can scale to meet fluctuating demand). Although
dge-cloud architectures have several advantages, data management presents a number of chal-
enges. The fact that they are used on such a vast scale and comprise several hardware and software
omponents presents the majority of the problems. 

When replicating stateful (edge or otherwise) components for scalability, synchronization is
xpensive and complicates fault tolerance; when replicating large amounts of data between the
dge and the cloud, concerns about network latency and storage capacity arise; in the context
f the Internet of Things, in particular, the heterogeneity of edge devices presents a very wide
ollection of data models, necessitating data processing frameworks to handle each. 

Transaction processing in cloud edge computing assisted Social Web of things (SWoT) has
he potential to revolutionize various industries by enabling seamless communication and coor-
ination among multiple devices and systems. One practical application of transaction processing
n SWoT is smart home automation, where several devices such as thermostats, lighting systems,
nd security systems need to interact with each other and share data. With transaction process-
ng, multiple devices can coordinate and manage transactions to ensure that data is consistent and
ccurate across all devices. This ensures a seamless user experience, where the user can easily
ontrol and monitor their smart home devices. 

Another practical application of transaction processing in SWoT is industrial automation, where
ultiple sensors and machines need to interact with each other and share data. In an industrial

utomation environment, using transaction processing, multiple sensors and machines can coor-
inate and manage transactions to ensure that data is consistent and accurate across all devices.
his is critical for safety and efficiency, as it enables real-time monitoring of production processes,
educing downtime and increasing productivity. 

In the healthcare industry, transaction processing in SWoT can be used for healthcare mon-
toring. In a healthcare monitoring system, there may be multiple sensors and devices that
ollect data from patients and send it to a central database. With transaction processing, multiple
ensors can coordinate and manage transactions to ensure that data is consistent and accurate
cross all devices and databases, which is critical for patient safety and effective treatment. This
nables healthcare providers to have access to real-time data, allowing them to provide timely
nd effective care to patients. 

Transportation management is another industry where transaction processing in SWoT can be
sed. In a transportation management system, multiple devices such as GPS trackers, cameras,
nd sensors can be used to collect real-time data on vehicle location, speed, and fuel consumption.
sing transaction processing, multiple devices can simultaneously access and manipulate shared
ata such as route optimization and fuel efficiency. This ensures that transportation companies
an optimize their operations and reduce costs while providing timely and efficient services to
heir customers. 

However, there are also limitations and challenges to using transaction processing in cloud edge
omputing assisted SWoT. The use of cloud edge computing resources may introduce additional
atency and network congestion, which can impact the performance of transaction processing.
he complexity of distributed transaction management techniques may make them difficult to im-
lement and maintain in a SWoT environment. The lack of standardization and interoperability
ACM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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Fig. 2. Edge –Cloud computing architecture. 
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mong IoT devices and platforms may also make it difficult to implement transaction processing
cross heterogeneous systems in a SWoT environment. It is essential to consider these limita-
ions and challenges when implementing transaction processing in SWoT to ensure successful
doption and usage of these systems. 

The Social Web of Things (SWoT) is a new paradigm that combines the Internet of Things (IoT)
nd social media technologies to enable new social interactions and services. Concurrent trans-
ctional services (CTS) are a type of transaction processing system that enables concurrent ac-
ess to shared data without conflicts or inconsistencies. In this context, analyzing social behavior
an be beneficial in advancing the use of CTS in SWoT. 

Social behavior can be defined as the actions and interactions of individuals within a social
roup. In SWoT, social behavior can provide insights into user needs, preferences, and expecta-
ions, which can be used to design and implement CTS that are more effective and user-friendly.
or example, social behavior can be analyzed to identify common patterns of interactions and
ollaborations between users, which can be used to develop personalized and context-aware CTS.

Moreover, social behavior can also help to address some of the challenges associated with CTS
n SWoT, such as security and privacy issues. By understanding user behavior and preferences,
TS can be designed to provide better security and privacy protections that are aligned with user
xpectations. For example, social behavior analysis can be used to identify the most sensitive data
nd transactions, which can be protected with stronger security measures. 

 EDGE –CLOUD COMPUTING SYSTEM 

he fundamental idea behind an edge cloud computing system is to use the computing approach as
lose to the data source as is feasible. In Figure 2 we see the edge-cloud computing architecture used
o back up transactional services. Edge computing systems use the local transaction manager
LTM) to process data, thereby bringing the cloud server to the hardware. The edge computing
rchitecture is divided into the physical layer, the network layer, and the application layer. The
hysical layer organizes the underlying hardware, such as sensors, robotics, actuators, and so on.
n the second tier, you’ll find all the edge servers that do the heavy lifting of processing terminal
evices to feed into the third layer. An edge server, in contrast to a cloud server, offers a more
CM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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onstrained computational service in terms of both capacity and resources. IoT data processing
n cloud servers is where it all begins. The potential benefits of looking at edge computing for
ransactional services far outweigh the costs of additional cloud server resources. Existing studies
n Internet of Things applications [ 2 ] mostly agree on this architecture, in which a global database
s dispersed among the cloud nodes. 

As a collection of data points, the term “global database” (GDB) is used to describe a certain
ype of information repository. In a GDB, data is split between hosts in the cloud and those in the
eriphery. Where the data items stored on cloud hosts constitute the fixed database (FDB) and
he data items stored on edge hosts constitute the mobile database of the global database. More
o, the MDB’s data items stored on a single edge host are referred to as a mobile part of the MDB.
 piece of information stored in the FDB is called a “fixed data item,” while the same piece of

nformation stored in the edge is called a “mobile data item.” There is only ever one authoritative
ersion of any given data item. The primary copy of an item of data can only be modified by its
wner. The MDB data item is held by a node on the edge, while the FDB data item is owned by
 node in the cloud. We also presumed that each edge host has access to local memory and pro-
essing power, and can independently assess and share its mobility status. While the cloud host
erforms a full replication of the mobile data items, the edge host performs a caching replication
f the fixed data items. In addition, information stored on other mobile devices is off-limits in an
oT transaction. In other words, it can only access mobile and fixed data items within its immediate
icinity. However, the system must respond to analytical questions based on edge data. The ability
o easily perform ad hoc searches for exploratory data analysis is only one example. For one thing,
t’s not always easy to anticipate what kind of information will need to be retrieved. Therefore, the
ystem needs to be adaptable enough to deal with different workloads by finding a happy medium
etween network throughput and processing speed at the edge. In an environment with a large
umber of IoT devices, network and CPU resources on the edge are sometimes constrained due
o cost and energy considerations, making it difficult to send all collected data to the cloud. Fur-
hermore, it causes lags in the most critical information at the moment. Finally, the heterogeneity
f the devices and the collected data makes it challenging for the cloud to have a consistent and
olistic view of data, adding to the complexity of analytical workloads. 
The idea behind the edge computing paradigm is to use edge devices for their processing and

torage capabilities while relying on cloud services for the more demanding calculations that edge
evices can’t handle. It may become necessary to upload massive amounts of data, created by
any different kinds of edge devices, to the cloud. Given this, we propose a global transaction
anager capable of handling IoT transactional services as part of a distributed data management

rchitecture for an edge-to-cloud computing environment, as shown in Figure 1 . By coordinating
he work of a local and global transaction manager, data transfer from the edge to the cloud may
o smoothly. To achieve this, it considers both the data that is now being requested by the cloud
nd the data that is already present in the cache. After that, it makes up for missed information by
alancing network latency and edge node load. 

Finally, the transaction manager guarantees consistent reading and writing between the edge
nd the cloud. 

 IoTT PROCESSING FRAMEWORK 

everal distinct models for Internet of Things Transactions (IoTT) [ 6 ] have been presented.
hese models expect an IoTT to be broken down into a series of smaller transactions, allowing

he atomicity to be loosened. All of these models have the common ground of being an extension
f sophisticated transaction models. To that end, rather than analyzing a particular IoTT model,
he focus of our study here is on assessing how well various execution strategies operate under
ACM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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arying network connectivity constraints. Our working hypothesis is that an IoTT is a collection
f smaller transactions executed on IoT data. In order for a subtransaction’s modification at the
xecution location to take effect, it must be mirrored on the other side of the network. (That is,
hanges made on the edge host should be mirrored on the cloud host and vice versa if execution
ccurs at the edge host.) Each IoTT is broken down into Tb, the most fundamental part of the trans-
ction, and Tc, the most fundamental part of the transaction’s complement. There are two types
f commit points because of this: local commit and global commit. When all of the basic subtrans-
ctions have completed processing, the status of each is recorded in a local commit because their
omplementary subtransactions might not be sent until the network is restored. Any changes made
o data during a subtransaction will be reflected in the master copy after a global commit has been
erformed. Only when the network is up and running can a global commit be performed. A IoTT

s considered committed if and only if its foundational and ancillary subtransactions are also com-
itted. There are two phases to processing a mobile subtransaction, with the first phase consisting

f a straightforward subtransaction. This is the time when the bulk of the transactional work is
one. A supplementary subtransaction is carried out once the data items on the fixed component
nd the mobile part are linked. This second-stage mobile subtransaction processing is a derivation
f the original basic subtransaction. Since a basic subtransaction always executes in the opposite
osition as its complimentary subtransaction, the latter often updates the same data items as the
ormer. Each component of an Internet of Things transaction is typically scheduled as either a data
equest or a transaction request. As part of a data request transaction, the most fundamental part is
andled by an IoTT host using data that has been previously stored in a fixed component’s cache.
 cloud server handles the complementing subtransaction that goes with it. On the other hand,

he cloud host processes the transaction request’s fundamental subtransaction by replicating the
dge host’s data items. The edge host handles the complimentary subtransaction that corresponds
o it. Any changes made to the data will be reflected in the original. If there is inadequate connec-
ivity between the IoTT host and the edge host’s local base station, the basic subtransaction will
e executed using cached data (i.e., poor bandwidth or disconnected). If some piece of information
s missing, the transaction is canceled; otherwise, a companion subtransaction is generated and
dded to the queue. As soon as the IoTT host is back online, the base station initiates transmission
f the queued complementary subtransactions to the cloud host. If a subtransaction that is meant
o work with it fails, the mobile subtransaction is canceled; otherwise, it should be waiting for
lobal commitment. If the connection to the network is strong, an IoTT will begin. As can be seen
n Figure 3 (a-c), the execution strategy determines the position of its fundamental subtransaction.

If a data request is chosen, the cloud server will be queried for the transaction-specific fixed
ata items (the size of downloaded data is determined by the amount of valid data in the cache of
he IoTT host). As a result, processing times for IoT transactions are about the same as they are
uring periods of low network availability. In contrast, a transaction request will be used if and
nly if it is selected. The IoTT host, who owns the mobile component, will provide the necessary
obile data items to the cloud host so that the basic subtransaction can be executed. Similarly,

f the network connectivity between the IoTT host and its local base station is enhanced over
 particular level, the additional subtransaction will be queued and conducted later. If network
onnectivity is stable once the primary subtransaction is complete, the secondary subtransaction
an be issued to update mobile data items on the IoTT host. Pseudo-code for the processing of an
nternet of Things transaction is shown in Algorithm 1 . 

Several factors should be taken into account before deciding whether to use the cloud or the
dge. In the same breath, it is not necessary for all IoT device data to be sent to the cloud for
rocessing, which would significantly reduce available network capacity. A portion of this infor-
ation need not be kept indefinitely. Therefore, as the number of IoT devices grows and people
CM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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Fig. 3. Execution framework for the three strategies. 
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ave greater access to resources, edge computing will emerge as a viable alternative to cloud
omputing. 

.1 Cloud Host Execution Strategy (CHS) 

ith this method, data from the mobile device that is necessary to complete an Internet of Things
ransaction is uploaded to a central server in the cloud. The cloud host works with the edge host
o coordinate the transaction’s execution and then sends the completed results back to the mo-
ile device. Therefore, an IoTT can be executed in a client-server architecture in the same way
s a regular distributed transaction would. The only real difference is that, due to the nature of
ireless communication, updates may take longer to spread and findings may take longer to re-

urn to an edge host. This plan of action is simple to implement. Its primary benefits are (1) strict
ata consistency, which is maintained because a transaction’s entirety is managed and executed
n the cloud host, allowing for the use of traditional transaction schemes; (2) reduced battery con-
umption, which is achieved by shifting the operations to the fixed network, computation tasks
n an edge host being avoided; and (3) increased concurrency at the cloud host, which is achieved
y avoiding long delays resulting from poor communication. Disconnecting a mobile device from
ts cloud host prevents it from doing independent tasks since critical information is not available.
his tactic is appropriate when all of the available database space is being utilized by the dedicated
ervers. Simply put, an edge host acts as a client or other distant device. This strategy is universally
cknowledged as a cornerstone of the processing paradigm. 
ACM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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ALGORITHM 1 : Processing Algorithm for IoTT 

IoTT Processing(Tb ,Tc) 

Begin 

For each IoT subtransa 

Build (T basic and T complemnetary ) 

Check availability of (R-Set, W-Set ) 

If the subtrans T is scheduled as D-req transaction then 

Begin 

For all Di belong to (R-Set, W-Set ) of T basic , 

Edge_Host Invoke a Lock_Req(for all Di belong to T_b) 

IOT-TM (IoT agent) Handel all read values. 

If Lock_Req(for all Di belong to T_b) = True 

Send (Return(R-set(Tbasic)) to Edge Host 

Edge Host_Execute( Tb) 

CloudHost_Excute(T complementary ) 

End 

Else if the subtrans T is scheduled as T-req trans then 

Begin 

For all Di belong to (R-Set, W-Set ) of T basic , 

Edge_Host Invoke a Excute_Req(for all Oi belong to T_b) 

IOT-TM (IoT agent) Handel all the required read values. 

If Lock_Req(for all Di belong to T_b) = True 

Send (Return(R-set(Tbasic)) to Cloud Host 

Edge Host_Execute( Tc) 

CloudHost_Excute(T b ) 

End 

If all succesof (IoT Subtransaction) = True then 

State( IoT Trans ) == commit 

End 
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.2 Edge Host Execution Strategy (EHS) 

nstead of moving data to a cloud host, a mobile unit can just have a copy of the data kept there.
his allows for continuing computing even if the connection drops. As an alternative to creating
 complete copy on a local disk, caching copies is a typical method used to facilitate self-sufficient
ctivities, boost availability [ 24 ], and reduce the need for network connection. This policy makes it
ossible to perform transactions without relying on persistent data services, as all data necessary
o complete an IoTT is stored locally. Consequently, the mobile unit can do the autonomous tasks.
ince the network link between a mobile unit and a cloud host is asymmetric, this policy utilizes
ess battery power than the CHS method when transmitting data. The transmitter on a cloud host
s usually more powerful, and the latter has access to an infinite supply of power. Because of this, it
s more likely that data transferred from a cloud host to a mobile unit will take less time than data
ransferred in the other direction. As far as we know, there are two ways in which information can
e transmitted. To begin, let’s pretend we’re operating under a set of predetermined guidelines.
n this method, necessary information is delivered to a mobile device from cloud hosts just before
 break in the connection is made. In this configuration, a disconnection protocol must anticipate
hich data will soon be needed. Second is the improvised mode. When operating in this mode,
ata is downloaded based on the requirements of active transactions and the availability of the
etwork. For example, the mobile device will get data items X and Y if the transaction requires
hem and the bandwidth is sufficient at this time. When there are two types of disconnection to
CM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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Fig. 4. The simulation model overview. 
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onsider, the first mode is more suited for predictable disconnection, while the second option is
etter suited for unpredictable disconnection. 

.3 Both Execution Strategy (BHS) 

or IoTT s with numerous subtransactions whose execution lifetimes span periods of fluctuating
esource availability, neither EHS nor CHS alone can provide improved performance in terms
f system throughput and battery consumption. Due to the dynamic nature of the mobile envi-
onment, an adaptive strategy to control transaction execution is preferred. Given a transaction
equest, the appropriate execution strategy for each subtransaction of the same IoTT is decided
etween cloud host and edge host execution strategies, taking into account the present mobile
omputing environment. This combined strategy enables the pairing of a mobile subtransaction
ith a data request or a transaction request. There are two major benefits that we can reap

rom this approach: The ability to (1) temporarily commit an IoTT using locally cached data and
2) submit other transactions even when the device is disconnected from the network paves the
ay for autonomous activities. (2) The host used to handle an IoTT is decided on in the moment. 

 PERFORMANCE EVALUATION 

ith the help of simulation, the efficacy of various execution approaches is analyzed. The purpose
f this simulation is to compare the efficiency of three distinct approaches to IoTT processing over
 range of network conditions. We detail the system parameters, simulation mode1, and discussion
f the outcome. 
The Simulation system is abstracted as a queuing model. Its general structure is given in Figure 4 .

he model relies on three servers—MH, IoT-TM, and FH—to function. IoTT Manager-Related
er vices Ser ver (IOT-TM) . In most cases, this service is prioritized for requests made through
ACM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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he Internet of Things. Depending on the chosen execution method, each IoTT will issue a dif-
erent set of requests, each of which will represent a different subtransaction. IoTT host services
re represented by the MH server, and cloud host transaction coordination services are repre-
ented by the FH server. When the primary subtransaction of an Internet of Things transaction
ompletes execution, the secondary subtransaction, if scheduled as a Dreq-transaction, is placed
n queue MQ1. A Dreq complimentary subtransaction enters queue FQ1 on a cloud host for pro-
essing if the network is connected, else it is placed in queue MQ1 until the network is connected
gain. If a Dreq complimentary subtransaction is successfully finish its execution, the mobile sub-
ransaction is completed; otherwise, the subtransaction fails. When all sub-transactions have been
ommitted successfully, the whole IoTT will be committed. This is the same procedure followed
or a Treq-scheduled subtransaction, albeit with different notations in Figure 4 : if the network
s connected, a T-req complementary subtransaction is submitted to an edge host for processing;
therwise, it must wait in MQ2 for network re-connection. The BHS tactic is best understood as an
malgamation of the EHS and CHS. Data is downloaded, the basic subtransaction is processed, a
upplementary subtransaction is submitted, and finally, the supplementary subtransaction is pro-
essed, all as part of the EHS method for handling Internet of Things transactions. So, in total, we
ave four elementary offerings. Similarly, the CHS model has four simple services as well. The
ata necessary for an Internet of Things transaction is sent from an edge host to a cloud host in
he CHS model, in contrast to the EHS approach. Additionally, a cloud host is used to run the first
hree elementar y ser vices, which are the submission of supplementary subtransactions, process-
ng of basic subtransactions, and the uploading of data. Whereas complimentary subtransaction
rocessing is conducted by the edge host that issues the transaction. When an edge host drops out
f the transaction chain, the BHS approach treats the transaction as a Dreq transaction and stops
ransmitting data. In the event of a successful network connection, the data will be transferred
ither via upload or download, depending on the schedule in effect. All three tactics are typically
imulated independently of one another. 

Requested transactions are always scheduled as Treq transactions if the policy is CHS. If a re-
uest is in the process of being processed when the network goes down, the request will abort.
f the network is not available after the first phase completes, the complimentary subtransaction
ill have to wait in the queue. The EHS methodology, in contrast to the CHS method, does not

outinely ignore a transaction request. Instead, cached data is used to complete the initial stage of
ransaction processing even if the network is down. If the network fails after this step, the request
ill be queued until service is restored. When the network is down, the BHS strategy operates

imilarly to an EHS method, and when it’s up and running, it’s a hybrid of the CHS and EHS. As
n added complication, a supplementary subtransaction may or may not be prevented. Transac-
ion processing speed is critically dependent on the availability of a reliable network connection.
o represent this, the time required to complete a Dreq transaction can be broken down into four
ategories, depending on the availability of the network. One can think of a CC-type transaction as
eing identical to any other transaction in a fully connected network. When one of the other three
ransaction types occurs, it usually means that one of two communication processes has failed
denoted by the D). Second, a CD-type transaction shows that the network was online through-
ut the data transmission but offline for the submission of the complementing subtransaction.
f the transaction is of the DC kind, then the network will be down for the data transfer but up
uring the submission of the complementing subtransaction. If a transaction is of the DD type,
t means that the network was down both during the data transmission and the submission of
he complimentary subtransaction. These four sorts of deals can each have varying results. The
nvironment is a factor in the calculations that determine how long tasks will take to execute and
ow long messages will take to send. The two main categories for the system’s services are those
CM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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Table 2. Parameters Settings 

Communication Parameters Default Values 
Arrival of IoTT 5 
Arrival of fixed transaction 5 
Mobility timer 5,10,15, . . . , 50 
Disconnection Threshold 1000, 150, 50 
UplinkBW 10–1500 
DlinkBW 10–3000 
Disconnection Period 20–30 
Service time Uplink Channel 30 
Service time Downlink Channel 10 
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ocused on communication and those focused on processing. Intended for a service that empha-
izes open lines of dialogue. The time it takes to provide a service depends on the size of the data
eing transferred and the available bandwidth, as well as a constant communication overhead.
he length of time required to complete a processing-oriented service depends on a variety of
arameters, including the following: the number of data items accessible; the average number of
perations performed on these data items; and the amount of time spent in the cloud host. 
Multiple databases hosted on both central and edge hosts make up the foundation of the cloud

atabase system. The term “transaction-generators” refers to the individuals responsible for creat-
ng new transactions within the system. The workload of an IoT system is defined by its average,

inimum, and maximum number of subtransactions in a given amount of time. There are a vari-
ty of factors that contribute to the total number of transactions, including the average, minimum,
nd maximum number of database operations in a subtransaction, as well as the likelihood of a
rite operation. The number of locations and local and IoT Transactions that make up the global

urden are generated at random. Many different kinds of deals are made at each individual loca-
ion. The regional infrastructure does not distinguish between the two varieties (local transaction
nd mobile subtransaction). When a transaction reaches the execution phase, it is scheduled by
rst obtaining a lock on the data it will use. If the lock is given, the operation is processed by
he CPU and I/O queue, and a signal to abort or commit is sent back to the IoT-TM for a mobile
ubtransaction, ending the subtransaction. Any local transaction or mobile subtransaction can be
ancelled by the local system. An IoTT is terminated and restarted at all sites if a mobile subtrans-
ction is cancelled locally. Edge hosts and IoT-TMs can exchange information in both directions,
ith uplink channels used for sending information and downlink channels used for receiving it.
plink and downlink communication overhead is 30 and 10, respectively. Twenty to thirty seconds
f inaccessibility to the mobile device is experienced during the disconnection. Several parame-
ers are tweaked between simulation runs to help compare and contrast the various execution
trategies. 

The simulation of the proposed system for transaction processing in cloud edge computing as-
isted social web of things (IoT) relies heavily on the parameter settings presented in Table 2 ,
able 3 , and Table 4 . The communication parameters listed in Table 2 are particularly critical for
nsuring the efficient and reliable transmission of IoT and fixed transactions. The arrival of IoT
nd fixed transactions, mobility timer, and disconnection threshold all affect the communication
etween IoT devices and edge hosts. The uplink and downlink bandwidths are also critical parame-
ers that affect the rate of data transmission between IoT devices and the edge hosts. Additionally,
he disconnection period and service time parameters determine the maximum amount of time
hat IoT devices can remain disconnected from the edge hosts without losing connectivity. 
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Table 3. Cloud Host Parameter 

Cloud host Parameter Default Values 
Number of LTM 10 
# of local trans Up to 500 
# of op in each UTrans 6–12 
Prob(write op) 0.3–0.5 
Lock time/op 10 
CC protocol 2 Phase Locking 

Table 4. Edge Host Parameters 

Edge host Parameters Default Values 
# of Edge units 500 
# of edge sub trans 1–10 
# of op/sub-trans 6–12 
Prob(write op) 0.3–0.5 
Execution cost at the edge host 2–5 Sec/operation 

# of visited IOT-TM ( Mobility) 5–50 
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Table 3 presents the cloud host parameters, which are also essential for accurate simulation of
he proposed system. The number of LTM, local transactions, and operations per unit transaction
re critical parameters that affect the capacity of cloud hosts to process transactions. The proba-
ility of write operation and lock time per operation also affect the efficiency of the transaction
rocessing system in the cloud. Moreover, the chosen concurrency control (CC) protocol can
ignificantly affect the consistency and reliability of the transaction processing system. 

Table 4 provides the edge host parameters, which are vital for accurately simulating the per-
ormance of edge hosts in the proposed system. The number of edge units, sub-transactions, and
perations per sub-transaction affect the processing capacity of edge hosts. The probability of
rite operation is also a critical parameter that affects the efficiency of transaction processing at

he edge. The execution cost at the edge host parameter is particularly crucial, as it determines
he time and resources required to process transactions at the edge. Additionally, the number of
isited IoT-TM during mobility is a crucial parameter that affects the mobility of IoT devices and
heir ability to remain connected to edge hosts during movement. 

The experiments aim to compare the performance metrics of the various execution strategies
hile studying the effect of the mobility ratio under varying disconnection scenarios. The effect of
uctuating network circumstances on the response time of transaction processing using various
xecution strategies is displayed in Figures 5 and 6 . One thousand Internet of Things transactions
re created in each trial. Depending on the situation, the mobility timer can be anywhere from
 seconds to 1 second. 

In Figure 5 , the outcomes are displayed when an edge host does not experience disconnection
BW = 1000). It is evident that the CHS is the most effective of the three techniques, while the EHS
s the least effective. This is mainly due to the fact that an IoTT scheduled as a data request trans-
ction requires more data transmission than a transaction request. In addition, the time required
or a global commitment during a data request transaction is higher. Given that the BHS strategy is
ore similar to the CHS than the EHS, most mobile subtransactions are scheduled as transaction

equests. It’s possible that the BHS won’t surpass the CHS method even if the network is com-
letely interconnected. As a result, the BHS strategy takes into account more than just network
onnectivity when deciding where the mobile subtransaction is executed. Other factors, such as
CM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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Fig. 5. Response time for IoTT. Fig. 6. Throughput for IoTT. 
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he amount of data being sent and the availability of funds, also play a role. It is possible for a
ransaction to be scheduled as a data request even if the network is fully connected if the cache
tatus shows that cached data for the transaction is valid. Therefore, the IoT Transaction’s sub-
ransactions can be scheduled in a more ad hoc fashion than the CHS method allows, depending
n the mobility vector associated with the transaction at the time. We can observe that lowering
he disconnecting value slows reaction times across the board. However, as the likelihood of dis-
onnection grows, CHS’s performance drops below that of the other two techniques, while BHS
ontinues to excel. The reason for this is because more mobile subtransactions are scheduled as
ata requests when there is a higher possibility of network disruption. But because the mobile
ubtransaction at connection time was scheduled as a transaction request, this environment pro-
ides more opportunities for the BHS strategy to use the mobility information, making it superior
o CHS at disconnection time and EHS at connection time. The CHS tactic has a better chance of
reventing the initial stage of executing a mobile subtransaction, the basic transaction. If the cash
tatus of the necessary data items is valid, however, an EHS or BHS strategy can use cached data
o conduct the basic transaction without the need to block a mobile subtransaction. Compared to
he CHS method, the response time is drastically reduced. 

The Internet of Things Transaction (IoTT) Processing Framework is a collection of smaller trans-
ctions executed on a mobile device, allowing the atomicity to be loosened. Rather than focusing
n a particular IoTT model, the study assesses various execution strategies under varying network
onnectivity constraints. The framework proposes that an IoTT is a collection of smaller transac-
ions executed on a mobile device, where each subtransaction is broken down into the most fun-
amental part (Tb) and the most fundamental part of its complement (Tc). Two types of commit
oints are created: local commit and global commit. Local commit is recorded when all the basic
ubtransactions have completed processing, while global commit is performed after changes made
o data during a subtransaction are reflected in the master copy. The transaction is committed only
hen its foundational and ancillary subtransactions are also committed. 
Processing a mobile subtransaction involves two phases, with the first phase consisting of a

traightforward subtransaction where the bulk of the transactional work is done. The second-
hase mobile subtransaction processing is a derivation of the original basic subtransaction that
s carried out once the data items on the fixed component and the mobile part are linked. Each
omponent of an IoTT is typically scheduled as either a data request or a transaction request, with
he IoTT host and cloud server handling the fundamental and complementing subtransactions,
espectively. If there is inadequate connectivity between the IoTT host and the edge host’s local
ase station, the basic subtransaction will be executed using cached data. If some information is
issing, the transaction is canceled; otherwise, a complementary subtransaction is generated and

dded to the queue. 
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The execution strategy determines the position of the fundamental subtransaction. The IoTT
rocessing Framework has limitations and challenges related to network connectivity and band-
idth issues that can affect the execution of the transactions. These challenges can be addressed

y implementing appropriate strategies such as using a hybrid approach that combines both edge
nd cloud computing, as well as implementing efficient caching techniques. Additionally, reduc-
ng the number of transactions sent over the network by batching them together and optimizing
he network communication can improve the performance of the IoTT Processing Framework.
y overcoming these limitations and challenges, the IoTT Processing Framework can facilitate
fficient transaction processing in the context of IoT applications. 

A greater amount of time is needed for processing on an edge host when using the EHS method
s opposed to the BHS strategy. The time spent on the edge host is decreased because more mobile
ubtransactions are scheduled as transaction requests with the BHS. When it comes to lowering
dge host power consumption, BHS continues to perform better than EHS even as the frequency
f network outages rises. However, Figure 6 displays experimental data for system throughputs
n terms of the number of completed transactions within a time interval as the network discon-
ection probability increases. In the first test, results are presented under varying conditions of
orkload, including those in which the mobility value is set to 20 and the disconnection value

s set to 150. There are two goals for this study. In the first place, you need to ensure that your
imulation model is accurate. This verification can be accomplished by comparing the execution
trategies’ response time and throughput gains. Using the fact that throughput under a given exe-
ution strategy should be inversely proportional to response time under the same conditions, the
econd goal of this experiment is to demonstrate how the BHS provides superior performance over
lternative strategies as workload increases at the median network connection. 

The BHS approach outperforms the EHS and CHS options on a regular basis. Figure 6 shows
hat the CHS strategy has the maximum throughput in a connected state, the EHS approach has
he lowest, and the BHS approach falls somewhere in the middle. This finding is in line with the
ne presented in Figure 6 , which demonstrates that a method’s response time can be slower the
ower its throughput. However, all techniques degrade in Figure 6 when the probability of being
isconnected is significant. Since the fundamental transaction under the CHS strategy is unable to
o through during network disconnection, the BHS is capable of producing superior throughput.
ven while the EHS can use cached data to complete transactions, it does not take into account
he time delay caused by the network’s connection. 

Transaction processing has practical applications in various fields of the social Web of Things,
nd some examples and case studies illustrate this. In smart home automation, multiple devices
an access and manipulate shared data, such as temperature settings and light controls, using
ransaction processing, providing a seamless user experience. In industrial IoT, machines and de-
ices can access and manipulate shared data, such as production schedules and inventory levels,
nsuring efficient production processes. Healthcare monitoring can use transaction processing to
llow multiple devices to access and manipulate shared data such as patient health records and
reatment plans, enabling healthcare providers to provide timely and effective care. In transporta-
ion management systems [ 25 , 26 ], GPS trackers, cameras, and sensors can collect real-time data
n vehicle location, speed, and fuel consumption, and using transaction processing, optimize op-
rations, reduce costs and provide efficient services to customers. 

Despite the potential benefits, there are some limitations to transaction processing in cloud edge
omputing assisted social Web of Things [ 27 ]. Complex transaction management algorithms can
ncrease processing time and system overhead, leading to decreased performance. Edge devices

ay have limited resources and processing power, which can affect system scalability and reli-
bility. There may also be security and privacy concerns when sensitive data is transmitted and
CM Journal of Data and Information Quality, Vol. 15, No. 3, Article 36. Publication date: September 2023. 
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tored in a distributed manner across multiple devices and networks [ 28 ]. Therefore, it is essential
o carefully consider these limitations and challenges to ensure successful implementation and
doption of such systems. 

 CONCLUSION 

n this paper, we take a look at the challenges of modeling edge-cloud computing environments and
rocessing IoT transactions. The investigation in this section is extensive, and the outcome is still
reliminary. Simulation is used to test how well the proposed method of scheduling transactions
erforms. This study uses simulated experiments to examine how well three transaction execution
lgorithms fare when faced with the possibility of network disconnection. Several viewpoints are
xplored in these studies by modifying the model’s characteristics like the mobility timer and the
isconnection ratio. If there is little to no network disconnection, simulation results show that.
he CHS is the fastest and most responsive of all the systems. This behavior is to be anticipated
ecause the system imitates a traditional fixed network in many respects. The EHS is preferable
o the HS when it comes to system throughput and response time, and this is especially true when
etwork connectivity is poor. The BHS approach typically results in better performance in terms
f response time, elapsed processing time of an edge host, and overall number of transactions. By
onsidering an edge host and a cloud host to be two distinct data centers, the BHS is able to boost
ystem performance and enable autonomous operations. 

IST OF ACRONYMS 

Acronym Definition 

IoT Internet of Things 
WoT Web of Things 
SWoT Social Web of Things 
EHS Edge Host Strategy 

CHS Cloud Host Strategy 

BHS Hybrid Strategy 

ACID Atomicity, Consistency, Isolation, Durability 

IoTT Internet of Things Transactions 
HTTP Hypertext Transfer Protocol 
MQTT Message Queuing Telemetry Transport 
CoAP Constrained Application Protocol 
QoS Quality of Service 
CTS Concurrent Transactional Services 
IoT-TM IoT Transaction Manager 
LTM Local Transaction Manager 
DM Data Manager 
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