International Journal of
Environmental Research

and Public Health

Article

Supervised Machine Learning-Based Models for Predicting
Raised Blood Sugar

Marwa Mustafa Owess 12, Amani Yousef Owda 1, Majdi Owda 3 and Salwa Massad 2

check for
updates

Citation: Owess, M.M.; Owda, A.Y.;
Owda, M.; Massad, S. Supervised
Machine Learning-Based Models for
Predicting Raised Blood Sugar. Int. |.
Environ. Res. Public Health 2024, 21,
840. https://doi.org/10.3390/
ijerph21070840

Academic Editor: Paul B.

Tchounwou

Received: 8 May 2024
Revised: 21 June 2024
Accepted: 26 June 2024
Published: 27 June 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Natural, Engineering, and Technology Sciences, Arab American University,

Ramallah P600, Palestine; m.owess@student.aaup.edu

The World Health Organization, Jerusalem P.O. Box 54812, Palestine; salwamassad@gmail.com
Faculty of Data Science, UNESCO Chair in Data Science for Sustainable Development, Arab American
University, Ramallah P600, Palestine; majdi.owda@aaup.edu

*  Correspondence: amani.owda@aaup.edu

Abstract: Raised blood sugar (hyperglycemia) is considered a strong indicator of prediabetes or
diabetes mellitus. Diabetes mellitus is one of the most common non-communicable diseases (NCDs)
affecting the adult population. Recently, the prevalence of diabetes has been increasing at a faster rate,
especially in developing countries. The primary concern associated with diabetes is the potential
for serious health complications to occur if it is not diagnosed early. Therefore, timely detection and
screening of diabetes is considered a crucial factor in treating and controlling the disease. Population
screening for raised blood sugar aims to identify individuals at risk before symptoms appear, enabling
timely intervention and potentially improved health outcomes. However, implementing large-scale
screening programs can be expensive, requiring testing, follow-up, and management resources,
potentially straining healthcare systems. Given the above facts, this paper presents supervised
machine-learning models to detect and predict raised blood sugar. The proposed raised blood sugar
models utilize diabetes-related risk factors including age, body mass index (BMI), eating habits,
physical activity, prevalence of other diseases, and fasting blood sugar obtained from the dataset of
the STEPwise approach to NCD risk factor study collected from adults in the Palestinian community.
The diabetes risk factor obtained from the STEPS dataset was used as input for building the prediction
model that was trained using various types of supervised learning classification algorithms including
random forest, decision tree, Adaboost, XGBoost, bagging decision trees, and multi-layer perceptron
(MLP). Based on the experimental results, the raised blood sugar models demonstrated optimal
performance when implemented with a random forest classifier, yielding an accuracy of 98.4%.
Followed by the bagging decision trees, XGBoost, MLP, AdaBoost, and decision tree with an accuracy
of 97.4%, 96.4%, 96.3%, 95.2%, and 94.8%, respectively.
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1. Introduction

Since 1980, the number of people with diabetes has skyrocketed, rising from 108 mil-
lion to a staggering 422 million by 2014, with a disproportionate increase observed in low-
and middle-income countries [1]. This alarming rise makes diabetes a major global health
concern, not only leading to blindness, kidney failure, heart attacks, strokes, and ampu-
tations but also contributing to a significant rise in mortality, with an estimated 2 million
deaths attributed to diabetes and its related kidney complications in 2019 alone [1].

The raised glucose level in the bloodstream is considered a primary characteristic of
diabetes. That develops when the production of insulin hormones by the pancreas gland
is insufficient enough to effectively regulate glucose levels resulting from the breakdown
of the food we consume as a source of energy for humans [2]. The prevalent symptoms
experienced among diabetic patients often include excessive thirst and hunger, frequent
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urination, fatigue, blurred vision, and weight loss [3]. Diabetes is divided broadly into two
major types, type 1 diabetes and type 2 diabetes. Type 1 diabetes is characterized as a severe
inadequacy or absence of releasing insulin by the pancreas due to an unknown disorder
in the immune system, it affects people at a younger age more often, and it also can affect
children. The primary treatment method for type 1 diabetes is insulin therapy. Type 2
diabetes is characterized by insulin resistance in which the body has insulin but does not
utilize it well to regulate the blood sugar levels [4]. This type is considered the most common
one among diabetes patients [5]. Recently, the incidence of type 2 diabetes has become
alarmingly high, which is attributed to several reasons related to risk factors associated
with diabetes, such as obesity, poor eating habits, lack of physical activity, smoking, and
alcohol consumption [6]. As per the statistics published by the International Diabetes
Federation in 2021, it is reported that over half a billion adults have been diagnosed with
diabetes [7]. The main burden associated with diabetes is that it can lead to developing
risky health complications if individuals with diabetes do not receive the proper care,
treatment, and management of the related risk factors [8]. Some of the most commonly
identified complications among diabetic patients included heart diseases, kidney failure,
neuropathy, teeth and gum diseases, peripheral arterial disease, foot problems, retinopathy,
blindness, and cerebrovascular diseases [9-11]. As a result of these health complications
associated with diabetes, it was recognized by the World Health Organization (WHO) as
one of the top ten leading causes of death worldwide [12]. However, the consequences of
diabetes can be mitigated through early diagnosis and effective management [13]. Figure 1
illustrates some risk factors and complications associated with diabetes Type 2.
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Figure 1. Type 2 diabetes mellitus risk factors and complications [13].

The medical methods typically used to diagnose diabetes include the fasting blood
sugar test, hemoglobin A1C (HbA1C) test, or oral glucose tolerance test (OGTT), each
type of these tests has a different procedure and threshold for diagnosing diabetes, for the
HbAIC test, the threshold is 6.5% or higher, in the case of OGTT the threshold is 200 mg/dL
or above [14,15]. Regarding the fasting blood sugar test, the normal range is between 70
and 99 milligrams per deciliter (mg/dL), readings between 100 and 125 mg/dL are defined
as impaired fasting glucose and might be an indication of the condition of prediabetes,
while when the fasting blood sugar measures 126 mg/dL or higher, it is recognized as
raised blood sugar which may indicate diabetes if the results of the fasting blood sugar for
two separate tests exceed this threshold [16].

With the aim of early detection of diabetes to avoid its potential complications, machine
learning can be employed to meet this purpose, as machine learning techniques have proven
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their efficiency in constructing powerful accurate predictive models, serving as assisting
tools for healthcare professionals in detecting diseases specifically [17-19].

In this context, this paper presents an innovative model for predicting raised blood
glucose among individuals as a screening tool for diabetes, by utilizing machine learning
algorithms and applying them to a dataset that was collected to study the risk factors
of non-communicable diseases (NCDs), focusing on raised blood glucose, raised blood
pressure, and high blood cholesterol diseases.

The key contribution of the raised blood sugar prediction model proposed in this
paper is its training on a unique first-hand and comprehensive dataset, considering both the
number of features and observations, which combine all the relevant risk factors of diabetes
including gender, age, BMI, smoking status, physical activity level, alcohol consumption
level, stress level, sugar and salt intake, medical history, blood pressure, blood lipids, and
physical measurement variables, which was used for the first time for modeling purposes,
achieving significantly higher accuracy when compared to previous work presented in this
field. It addressed the challenges faced by prior proposed models that were demonstrated
on frequently used datasets containing a small set of feature issues, in addition to data
quality issues [20,21]. Moreover, the proposed models can serve as a supportive tool
to aid in screening for diabetes, by identifying adults with raised blood sugar levels,
facilitating referrals for further diagnosis, and enabling early detection. Notably, it offers
the advantage of reducing the time and costs used in other standard approaches for diabetes
diagnosis, especially in developing countries, as the target feature in this study is based
on the readings of fasting blood sugar test, which is considered a low-cost, accessible, and
effective method for diabetes screening. The results generated by the proposed models
can prompt individuals to take necessary preventive measures and manage risk factors
associated with diabetes, including adjusting their lifestyle and monitoring their health. As
well as this, it identifies potential cases for undergoing additional tests for timely detection
and treatment.

This section presented an overview of the raised blood sugar and the condition of
diabetes, the following sections in this paper are organized as follows: Section 2 introduces
a literature review of using machine learning to predict glucose metabolism disorders and
discusses the related studies in this field. Section 3 illustrates the methodology used to
build the raised blood sugar prediction model, and Section 4 discusses the experimental
results. Section 5 presents the conclusion and the plans for future work.

2. Literature Review

Several studies have presented data-driven models for predicting glucose metabolism
disorders by utilizing various machine learning algorithms and techniques [22], including
supervised learning algorithms, neural networks, or image processing techniques [23,24].
These studies that are related to glucose metabolism disorders prediction involved either
diabetes, prediabetes, hyperglycemia, or raised blood sugar. The author of [25] presented a
model for predicting diabetes by using a dataset collected from native American Indian
females (PIDD dataset) [26]. The presented model utilized artificial neural networks (ANN),
random forest (RF), and K-means clustering algorithms. The ANN-based model achieved
the best results among the three implementations with accuracy of 75.7%, also this study
aimed to characterize the relationship between the significant risk factors responsible for
causing diabetes using Apriori association rules, which showed that diabetes is strongly
associated with body mass index and glucose level. Another comparative study in [27]
was demonstrated on the PIDD dataset for predicting diabetes using a set of machine-
learning algorithms including Support Vector Machine (SVM), decision tree (DT), K Nearest
Neighbor (KNN), random forest, naive Bayes (NB), AdaBoost, logistic regression (LR),
and ANN for building the models, each algorithm was tested using two methods, once by
splitting into training and testing datasets and another time using k-fold cross validation
technique. The model built using ANN had the highest accuracy score of 88.6%. The
authors of [28] presented a comparative study for building a diabetes classification model
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using different machine learning classification algorithms including random forest, SVM,
KNN, and decision tree J48. The study utilized the UCI diabetes public dataset consisting
of variables of diabetes symptoms [29], although the experimental results of the proposed
model were excellent in terms of accuracy it still needs more testing and investigation by
demonstrating to a more challenging dataset since it was applied to a dataset of a minimal
set of features having binary classifications only.

The study in [30] presented a machine learning-based diabetes detection model that
can be used as a clinical decision support system for assisting healthcare workers in di-
agnosing diabetes cases, the proposed model was implemented using a set of machine
learning algorithms including random forest, SVM, and deep convolutional neural net-
works (CNN), the diabetes detection model achieved the best results when utilized using
random forest with an accuracy of 83.6% model, also the accuracy was 76.81% using deep
CNN, and 65.38% using SVM. The authors in [31] proposed a deep learning model for
diabetes prediction using artificial neural networks (ANN), naive Bayes, decision tree, and
deep learning (DL) algorithms, the model was applied to the American Indian females’
diabetes public dataset and resulted in high accuracy of 98.07%. However, the study did
not discuss the model performance in case of using a low-quality dataset that might contain
missing values or unbalanced data. The study in [32] proposed a hybrid prediction model
for predicting type 2 diabetes, which is based on using K-means and logistic regression
techniques. Using the K-means algorithm in this model helped eliminate incorrect clus-
tered data in the preprocessing stage, before applying the logistic regression algorithm
for performing the classification. The demonstrated diabetes prediction model achieved
an excellent prediction accuracy of 93.9% in comparison with previous works applied to
the same dataset. The authors in [33] presented a comparative study for a different set of
machine learning algorithms that were used in building models for predicting diabetes
based on the related risk factors including age, gender, BMI, family history of diabetes,
marital status, education level, stress, sleep, physical activity, diet, salt consumption, and
drinking coffee. The study focused on comparing the performance of ANNSs, decision tree,
and logistic regression machine learning algorithms in building the diabetes prediction
models. Using the decision tree algorithm in the diabetes prediction model achieved the
best performance results with an accuracy of 77.87% while using the ANN resulted in the
lowest accuracy. The proposed model was applied to a balanced dataset collected from
Chinese adults including observations from both diabetes patients and normal adults not
diagnosed with diabetes. The authors of [34] presented a machine learning model for
predicting diabetes and cardiovascular disease using a dataset obtained from the National
Health and Nutrition Examination Survey (NHANES) [35]. The NHANES dataset was
collected by an ongoing study that includes personal interviews, physical examinations,
and lab test results. The authors divided the collected NHANES dataset into two subsets,
one having the diagnosis of diabetes reported by participants. The second subset included
subjects with fasting blood sugar (FBS) greater or equal to 126 mg/dL and diabetes pre-
diagnosis not reported by participants, to be considered diabetic patients. The main features
used in this study are physical characteristics (age, waist size, leg length, etc.), dietary
intake (sodium, fiber, caffeine intake), demographics (ethnicity and income), and laboratory
test results (HDL, LDL, cholesterol, urine). The proposed diabetes prediction model in
that study was implemented by testing different machine learning classification algorithms
such as logistic regression, SVM, random forest, and gradient boosting trees on the two
subsets, once without including laboratory variables as the input for the models and an-
other time using laboratory tests. The tested algorithms were combined to implement a
weighted ensemble to enhance the achieved performances. The testing results using the
five models of the four different cases of the dataset achieved the best performance using
the XGBoost algorithm, when it was applied to the subset that includes the lab test results
and reported diabetes diagnosis as the target feature. Another study was presented and
utilized the NHANES dataset for predicting prediabetes [36]. The proposed prediabetes
models employed several machine learning algorithms including random forest, AdaBoost,
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LogitBoost, logistic regression, J48, naive Bayes, PART, sequential minimal optimization
algorithm (SMO) SVM, and instance-based learner (IBk). The used features for training
the prediabetes prediction models were BMI, family history of diabetes, race, hypertension
patient, and total cholesterol, while the target categorical yes/no feature was derived from
any one of the available tests of either FBS, HbAlc, or 2 h postprandial glucose test (2hrPG).
The naive Bayes prediabetes prediction model achieved the best positive predictive value
of 74.5%. The work in [37] presented machine learning-based models for predicting the
risk of glucose metabolism disorders using a private dataset collected from employees
working in a certain Japanese corporation who underwent annual medical examinations.
The proposed glucose metabolism disorders prediction models were based mainly on using
XGBoost and logistic regression classifiers, which were trained on a dataset that includes
age, sex, BMI, systolic and diastolic blood pressure, triglyceride, HDL, LDL, creatinine,
immunoreactive insulin (IRI), 1 h and 2 h plasma glucose (PG), and total cholesterol. The
OGTT, FBS, and HbA1C test results were used to determine the class of the target feature
that represents whether an observation belongs to the group at risk of glucose metabolism
disorders or not. The model achieved the best performance using the XGBoost algorithm.
Table 1 summarizes the main findings of the previous works and the literature pro-
posed to predict different types of glucose metabolism disorders, including the used
features, the utilized algorithms, the best-performing model, and its best outcome result.

Table 1. Research findings related to machine learning prediction model for glucose metabolism disorders.

Ref. Dataset Features Target Feature Algorithms Best Model Out(,;)ome
age, number of pregnancies,
glucose, diabetes pedigree Diabetic class ANN, RF, Accuracy
(5] PIDD function, blood pressure, skin (yes/no) K-means ANN 75.7
thickness, insulin, BMI
number of pregnancies, glucose,
blood pressure, skin thickness, Diabetic class SVM, DT, KNN, RF, Accuracy
[27] PIDD X . : . AdaBoost. NB, ANN
insulin, BMI, diabetes pedigree (yes/no) 88.6
. LR, ANN
function, age
age, gender, polyuria, polydipsia,
ucl sudden weight loss, weakness, Accuracy
[28] Diabetes polyphagia, genital thrush, visual Diabetes patient RF, SVM, KNN, and DT J48(with noisy data) 73.82
D blurring, itching, irritability, (yes/no) DT J48 RF (without noisy data) Accuracy
ataset X . f
delayed healing, partial paresis, 100.0
muscle stiffness, alopecia, obesity
number of pregnancies, glucose,
blood pressure, skin thickness, Diabetic class Accuracy
(301 PIDD insulin, BMI, diabetes pedigree (yes/no) RE, SVM, CNN RE 83.6
function, age
number of pregnancies, glucose,
blood pressure, skin thickness, Diabetic class Accuracy
(311 PIDD insulin, BMI, diabetes pedigree (yes/no) NB, DT, ANN, DL DL 98.07
function, age
number of pregnancies, glucose,
blood pressure, skin thickness, Diabetic class ~ Hybrid model (K-means Accuracy
321 PIDD insulin, BMI, diabetes pedigree (yes/no) K-means and LR and LR) 93.9
function, age
age, gender, BMI, family history of Ac7c;.1 ;e;cy
Privately diabetes, marital status, education Reported diabetes Sensi.tivit
[33] collected level, stress, sleep, physical diagnosis ANN, DT, LR DT Y
d n L : 80.68
ataset activity, diet, in-salt taking, and (yes/no) e
drinking coffee specificity
5 75.13
ROC AUC
age, waist size, leg length, sodium, Reported diabetes LR SVM. RE 86.2
[33] NHANES fiber, caffeine intake, ethnicity diagnosis 4 o XGBoost Precision, Recall,
. XGBoost, Ensemble
and income (yes/no) Fl-score

78.0
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Table 1. Cont.
Ref. Dataset Features Target Feature Algorithms Best Model OutocA)ome
age, waist size, leg length, sodium, R ted diabet ROSS[;UC
[33] NHANES fiber, caffeine intake, ethnicity and ep(zir_ ed diabetes LR, SVM, RF, XGBoost Precisi : Recall
- income, HDL, LDL, (1agr/1?\51)s XGBoost, Ensemble 008 rec;s;fm, reeca 4
cholesterol, urine yes/no sco
89.0
ROC AUC
age, waist size, leg length, sodium, 73.7
[33] NHANES fiber, caffeine intake, ethnicity, FBS > 126 LR, SVM, RE, Ensemble Precision, Recall,
. (yes/no) XGBoost, Ensemble
and income Fl-score
68.0
age, waist size, leg length, sodium, ROgO/;UC
) fiber, caffeine intake, ethnicity and FBS > 126 LR, SVM, RF, L
[34] NHANES income, HDL, LDL, (yes/no) XGBoost, Ensemble XGBoost Prec;s;f)n, lr{ecall,
cholesterol, urine score
68.0
FBS > 100,
. . . = g RF, AdaBoost, LR,
136] NHANES BMI, family h1s§0ry of diabetes, or 2hrPG > 14(1, or J48, NB, PART, SMO, NB Accuracy
race, hypertension, cholesterol HbA1C > 5.7% . 74.5
IBK, LogitBoost
(yes/no)
Privately age, sex, BMI, blood pressure, FBSOZr 100,
[37] collected trltglilcler;ldel, PtIDrLl’ Ii:]gls” Ic;z;tllrgne, 2hrPG > 140, or LR, XGBoost XGBoost RO%%UC
dataset otal cholestero, . ! HbA1C > 5.7% :

IRI, PG

(yes/no)

By investigating the related works and literature, it was found that several previous
studies have been proposed within the scope of predicting glycemic conditions. Those
works mainly relied on either the diabetes diagnosis which is self-reported by the pa-
tients [25,27,28,30-33] or by deriving the classification of diabetes, prediabetes, or glucose
metabolism disorders using either the fasting blood sugar or HbA1C or OGTT [33,34,36,37].
Many of these studies commonly referred to the term diabetes in naming their mod-
els [25,27,28,30-33], while others titled their studies using the term glucose metabolism
disorders [37]. In addition to other models that targeted the prediction of prediabetes [33,36].
In this study, the title of the proposed work used the term raised blood sugar specifically,
which is identified by the level of fasting blood sugar higher or equal to 126 mg/dL, to be
more accurate in the use of the model as a screening tool for detecting raised blood sugar
levels that might be suspected cases of diabetes. The aim is to recommend monitoring
blood sugar levels by taking repeated readings and facilitating referral of detected cases for
diabetes diagnosis, considering the sensitivity of models proposed to support the health
and medical domain.

The raised blood sugar prediction models proposed in this paper are trained on a
unique, comprehensive dataset that includes a wide range of relevant risk factors such
as gender, age, BMI, smoking status, physical activity, alcohol consumption, stress level,
dietary intake, medical history, blood pressure, blood lipids, and physical measurements.
This dataset, specifically collected to study NCD risk factors, allowed for significantly higher
accuracy compared to previous studies. The proposed models can serve as supportive tools
for screening diabetes, identifying adults with elevated blood sugar levels, and facilitating
early detection and referrals. Additionally, these models offer a cost-effective alternative to
standard screening approaches, especially in developing countries, by utilizing accessible
methods like fasting blood sugar tests. The models’ results can prompt individuals to take
preventive measures and manage risk factors, thereby improving public health by reducing
premature mortality rates and healthcare expenditures associated with high blood sugar
and diabetes.

3. Methodology

This section illustrates the phases of the proposed raised blood sugar prediction
models, including the description of the used dataset, the data cleaning and preparation,
the exploratory data analysis, data preprocessing, and proposed machine learning-based
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models for building the raised blood sugar prediction using random forest, decision tree,
XGBoost, Adaboost, bagging decision trees, and multi-layer perceptron (MLP) classifica-
tion algorithms.

Figure 2 depicts the main phases of the implemented raised blood sugar (RBS) detec-
tion models. The next subsections within this section will provide detailed insights into
these six phases and their inside components utilized in constructing the proposed models
for raised blood sugar detection.

=
@sj

Machine Models
Learning Performance
Models Evaluation

Data Cleaning
Data and Exploratory

Collection Pt Data Analysis Preprocessing

Figure 2. Main phases of the raised blood sugar detection models.

3.1. Data Collection and Dataset Description

The dataset utilized in this work for constructing the raised blood sugar prediction
models was obtained from surveys conducted as part of the STEPS study (STEPwise
approach to NCD risk factor surveillance) [38]. The STEPS study, standardized by the World
Health Organization, focuses on assessing the risk factors of NCDs and their prevalence
across different countries. As the name of the study indicates, it consists of three levels
of risk factor assessment, the first level is a questionnaire, the second is for physical
measures, and the last step is biochemical measures. The STEPS study was conducted by
the Palestinian National Institute of Public Health in collaboration with the Palestinian
Ministry of Health in Palestine in 2022.

The STEPS dataset was collected by conducting interviews with participants, en-
compassing demographic, social, economic, smoking, alcohol consumption, eating habits,
health history, sleeping habits, physical activity levels, and mental health questions. Physi-
cal measurements were also recorded, including blood pressure, heart rate, weight, height,
and BMI calculations. Additionally, the dataset includes laboratory test results for fasting
blood glucose, HDL, total cholesterol, and triglyceride levels. It consists of more than
5 thousand records and around 130 variables.

The target population of the collected dataset is Palestinian adults aged between 18
and 69 of both sexes who have been living in Palestine for at least 12 months. The used
sampling approach in collecting this dataset is three-stage stratified cluster sampling to
select a random sample of adults from 525 enumeration areas in the West Bank and the
Gaza Strip, then selecting 11 households from each enumeration area. The first stage
was selecting the enumeration areas, the second stage was selecting households from
each enumeration area by using blind maps provided by the Palestinian Central Bureau
of Statistics and the Kish table sampling method, and the third stage was selecting a
participant from the households. The total sample size is 5775 participants. The data
collection team consisted of two members, the first member is a field worker responsible for
conducting personal interviews with participants that aim to collect demographic, socio-
economic, and personal lifestyle information. The second one is a nurse who is responsible
for collecting medical history, recording the physical measurements, and performing the
blood tests for participants.

It is worth pointing out that the adoption of the STEPs dataset in this study to build
machine learning models represents a contemporary pattern, as there is a very limited
number of studies that utilized the STEPs dataset in training machine learning-based
models since the start of conducting the NCDs stepwise approach study. The STEPS
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Palestine 2022 dataset is owned by the Palestinian Ministry of Health and is still not
available publicly.

3.2. Data Cleaning and Preparation

This phase is considered an important step to prepare the data for the next phases
of dataset exploration and modeling as well, which might be affected due to data quality
issues. This phase mainly involved steps for cleaning the STEPS dataset.

e  Handling missing values: Upon exploration of the STEPS dataset, it was observed to
contain some missing values. On checking for missing values, several issues were iden-
tified and addressed. Records with consent values of 2 and empty remaining variables,
indicating refusal to participate, were excluded. Pregnant women's records, which
lacked physical measurements as per STEPs survey guidelines, were also dropped to
maintain accuracy. Special codes used as placeholders for missing categorical values
were replaced with the mode of the respective variables. Missing values in conditional
variables, such as daily smoking based on current smoking, were filled with zero. For
missing biochemical measurements, the issues stemmed from either lack of consent for
Step 3 participation or non-adherence to fasting instructions, observations belonging
to these cases were handled by dropping them from the dataset.

e Handling outliers: The STEPS dataset comprises various types of data, including
data about the participant’s lifestyle, medical history, and lab test results. Some of
these features contain abnormal values. A visual approach, utilizing boxplots, was
employed to detect outlier values. The feedback provided by domain experts along
with the research results for identifying normal ranges were used to handle the outlier
values either by dropping or substitution.

3.3. Exploratory Data Analysis

In data-driven models, exploratory data analysis using either statistical or graphical
methods plays an important role in investigating the dataset [39]. Therefore, in this study,
exploratory data analysis techniques using a graphical approach were used, which provided
a comprehensive understanding of every single feature in the dataset, along with detecting
the different relationships between the dataset variables. The illustrated figures below
show some characteristics of the used STEPS dataset, in addition to different relationships
between the dataset variables.

As mentioned earlier, the population of the STEPS study is adults between 18 and
69 years. Figure 3 shows the frequency of participants’ ages in the STEPS dataset.

Age of Respondents

140

120

100

Frequency
]

=)

40

Age

Figure 3. Age distribution of participants in the STEPS dataset.
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Figure 4 shows the distribution of participants in the study by their gender. The
majority of the participants are from the female group.

Participants Gender Distribution

Female
Male

68.6%

31.4%

Figure 4. The distribution of participants in the STEPS dataset by sex.

Figure 5 shows a comparison between the female group and the male group of partici-
pants, in terms of their BML. It is evident that female participants have higher BMI rates
than males.

Gender vs. BMI

10

Female Male
Participants Gender

Figure 5. Comparison of BMI rates by participants” gender.

Figure 6 shows the distribution of the weight categories of participants by age and
gender. From the graph below, it is clear that overweight and obesity are more prevalent
among participants at higher ages.
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BMI Category vs. Age by Gender

80 Gander
[ Female
= Male

70

60

50

4]
2

40

30

20

10

Underweight Healthy Weight Overweight Obesity
BMI Category

Figure 6. Comparison of BMI classifications by age and gender.

Figure 7 below illustrates the relationship between the classification of the fasting
blood sugar and the BMI of the participant, which shows that subjects of the raised blood
sugar class have higher BMI rates. It should be noted that the term “Not Raised Blood
Sugar” in all of the graphs below refers to the category of subjects that involves cases of
normal and impaired blood sugar levels.

Blood Sugar Classification vs. BMI

60

{ R

.

.
50
40

5» _

20

Not Raised Blood Sugar Raised Blood Sugar
Blood Sugar Classification

Figure 7. Blood sugar classifications by BMI.

Figure 8 depicts the prevalence of diabetes reported by the participant through the
medical history interview question “Have you ever been told by a doctor or health worker
that you have diabetes”. As shown in the below figure, the detected raised blood sugar
cases by the fasting blood sugar test among the diabetic group represent 8%, which indicates
that diabetes among this diagnosed group is not controlled. On the other hand, in the
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non-diabetic group, the percentage of participants who have raised blood sugar is 3.5%,
which may indicate undiagnosed cases of diabetes.

Blood Sugar vs Diabetes Prevalence

81.4% Blood Sugar

4000 Not Raised
=== Raised

Count

1500

1000

71% 8.0%

== _
o |

Not Diabetic Diabetic
Prevalent Diabetes

Figure 8. Comparison of blood sugar between diabetic and nondiabetic groups.

Figure 9 illustrates the relationship between the classification of the blood pressure
levels measured by three separate readings and the blood sugar level among the participants
in the STEPS dataset. It shows that around twice the number of cases in the raised blood
pressure class also have raised blood sugar. This emphasizes the results that have been
concluded by several previous studies about the strong association between hypertension
and hyperglycemia conditions [40,41].

4600 Blood Pressure Level vs. Blood Sugar

Blood Pressure Level
Normal
Raised

73.4%

3500

2500

Count

1500

1000
15.1%

S00 7.6%

3.8%

Not Raised Blood Sugar Raised Blood Sugar
Blood Sugar Classification

Figure 9. The relationship between blood pressure and blood sugar levels.

Figure 10 shows a comparison of the prevalence of raised blood sugar levels between
the female participants group and male participants, which is higher among the women’s
group than the men’s group.
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Not Raised Blood Sugar
Raised Blood Sugar

0,
87.3% 91.3%

0,
12.7% 8.7%

(a) Females Group (b) Males Group

Figure 10. Comparison of the raised blood sugar prevalence between the female and male groups.

Figure 11 shows the prevalence of reported diabetes among participants distributed
by the BMI category according to their weight. In the case of participants who are classified
as obese, it is obvious that around 30% are diagnosed with diabetes, for participants in
the overweight class, around 15% of them are diabetic patients, while these percentages
are significantly lower in the healthy weight and underweight categories. This indicates a
relationship between obesity and overweight with diabetes, which is determined as a risk
factor for developing diabetes [42—44].

BMI Category vs. Diabetes

Diagnosed with Diabetes
No
- Yes

1750
31.0%
1500
26.5%

o
1250 24 4%

1000

Count

10.1%
500

3.8%
3.0%

1.3%
—
o}

Underweight Healthy Weight Overweight Obesity
BMI Category

Figure 11. The prevalence of diabetes among participants by their BMI class.

Figure 12 shows the distribution of the observations according to the results of the
fasting blood sugar test. The green observations indicate subjects with fasting blood sugar
levels less than 100 mg/dL belong to the normal class, while the observations illustrated in
orange, which are located above the dashed line, represent the impaired cases who have
fasting blood sugar levels between 100 mg/dL and 125 mg/dL. The observations of fasting
blood sugar that are higher or equal to 126 mg/dL, which are depicted in green in the
graph and situated above the continuous line that represents the threshold of raised levels,
are classified as raised blood sugar cases. For the raised blood sugar cases, it is evident that
the observations are sparse, indicating irregular sugar levels in blood.
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Observations Distribution by Fasting Blood Sugar

Fasting Blood Sugar Level
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Impaired
® Normal
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Figure 12. The distribution of participants by fasting blood sugar.

3.4. Data Preprocessing

Preparing data is a crucial step in modeling, which is necessary to address any issues
with the data before applying machine learning models. This ensures optimal results by
utilizing clean and uniform data. Since data quality significantly influences the effectiveness
of models, the initial step in implementing the proposed model involves preprocessing the
STEPS dataset. Data preparation and preprocessing for the STEPS dataset involved the
following steps.

3.4.1. Determining Target Feature

The target feature in the proposed model is a binary variable derived from the fasting
blood sugar reading that is available in the processed STEPS dataset, which indicates
whether the participant has a raised blood sugar or not, based on the threshold identified
by WHO, which determines levels of 126 mg/dL or higher of fasting blood sugar as
elevated blood glucose cases [16]. The positive class in this feature reflects the raised blood
sugar cases, while the negative class means not raised cases with fasting blood sugar levels
less than 126 mg/dL, which involves both normal and impaired cases.

3.4.2. Feature Selection

Various techniques were employed to identify the most significant features for con-
structing the raised blood sugar prediction model and eliminating the irrelevant features,
which was concluded by several researchers and previous studies to have an impact on
improving the accuracy of classification algorithms [45,46]. The involved feature selection
techniques in this study include correlation matrix, chi-square, and random forest classifier
feature importance.

e  The correlation matrix was used to explore the relationships between the set of inde-
pendent variables in the processed dataset and to decide on the list of independent
variables that could be eliminated due to high correlation which may affect the model
performance badly. The impact of multicollinearity is not an issue specific to regression
models only, but it may affect classification models as well [47]. Its impact on classi-
fication models involves both the stability and the interpretability of the model [48].
In this study, the criteria that were followed in handling the multicollinearity issue
between independent variables were based on eliminating one of the independent
features that has a correlation coefficient value greater than 0.7 with another inde-
pendent one [49]. Figure 13 shows the correlation matrix for a subset of independent
features related to the medical history of participants and the raised blood sugar (RBS)
target feature. In Figure 13, it can be seen there is a high collinearity between a set of
independent features, represented in the relationship between prevalent hypertension
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and taking high blood pressure medication features, the second collinearity is found
between prevalent diabetes and taking diabetes medication features, and the third one
is between prevalent cholesterol and raised cholesterol medication features. All of
these combinations have collinearity with a correlation coefficient value of 0.8, which
is greater than the threshold of 0.7. In this step, the selected features to eliminate are
those related to taking medication variables.
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Figure 13. Variables correlation matrix.

The chi-square was used to identify the categorical independent set of variables that is
correlated with the target variable of raised blood sugar. Figure 14 below shows the
list of independent categorical features identified as the top 15 important features in
predicting the target feature of raised blood sugar. This list included the history of
cholesterol, history of hypertension, history of CVD, raised blood pressure, level of
sugar intake, history of osteoporosis, physical inactivity, sleep disturbances, gender,
former smoker, level of salt intake, current smoker, anxiety and depression (PHQ4),
insufficiency of fruit and vegetable intake, and history of asthma, as the most important
features identified by the chi-square test for the prediction of raised blood sugar. The
history of diabetes was not forwarded to this test of feature importance since it is
correlated with the outcome variable which can affect the predictive power of the
model. This step helped in identifying the important predictor variables for the
outcome features related to raised blood sugar and raised blood pressure prediction
models. However, no variable was eliminated within this step, the set variables
were forwarded for further phase of exploring features importance using the random
forest classifier.
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Figure 14. Feature importance using univariate feature selection (chi-square test).

e Arandom forest classifier was utilized as the final step in the feature selection process.
The random forest classifier was used to obtain the optimal feature selection process,
by forwarding all types of variables, either categorical or continuous, as the input
and identifying their performance in comparison to the outcome variables in the
proposed models [50]. Utilizing the random forest in the variable’s selection process
is considered one of the most powerful methods to determine the appropriate and
significant features that contribute to the prediction of the outcome feature in machine
learning models [51]. Figure 15 illustrates the results of feature importance that were
obtained by integrating the random forest classifier in selecting the top 30 features for
predicting the raised blood sugar outcome variable.

Feature Importances using Recursive Feature Elimination based on Random Forest
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Figure 15. Feature importance using recursive feature elimination based on random forest.

Based on the given results, the final list of features that will be used for the next
stage of training the raised blood sugar prediction model are age, triglyceride, waist-to-
hip ratio, BMI, waist circumference, heart rate, total cholesterol, hip circumference, HDL
cholesterol, history of cholesterol, sugar intake level, history of hypertension, inadequate
sleeping hours, insufficient physical activity, anxiety and depression, level of salt intake,
history of CVD, raised blood pressure, passive smoking, mental health ill-being, JSS sleep
disturbances, insufficient intake of fruits and vegetables, gender, smoking, history of
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osteoporosis, former smoker, history of asthma, history of cancer, history of renal failure,
and alcohol consumption.

3.4.3. Feature Scaling

The STEPS dataset contains numerical features from various scales, which can pose
computational challenges during predictive modeling. Therefore, the min—-max normal-
ization technique was utilized to scale the numerical features, reducing computational
complexity. This technique normalizes the features to a range between 0 and 1, as shown in
Equation (1) [52].

X — Xmin

Xnorm = — 2R 1
oM = X max — Xmin’ M

3.4.4. Dataset Oversampling

Through exploratory data analysis of the processed dataset, it was identified that the
target feature, indicating raised blood sugar level, exhibits class imbalance. Specifically, only
11.5% of observations in the dataset indicate raised blood sugar levels, while 88.5% signify
normal blood sugar levels, as shown in Figure 16. This imbalance can adversely affect
machine learning algorithms, as class imbalance is a significant challenge in classification
algorithms [53]. To mitigate this issue, the oversampling technique was implemented [54].
This involved replicating observations from the minority class (raised blood sugar levels)
to match the size of the majority class (not raised blood sugar levels).

Normal / Impaired Blood Sugar
Raised Blood Sugar

50.0%
88.5%

11.5%

50.0%

(@) (b)
Figure 16. Distribution of cases by the level of blood sugar before (a) and after (b) applying oversampling.

3.5. Machine Learning Models

This section outlines the workflow of the proposed model and the machine learning al-
gorithms utilized for building the raised blood sugar prediction models. Figure 17 illustrates
the workflow of the proposed raised blood sugar (RBS) detection models.

Referring to Figure 2 in this section, Figure 17 below outlines the details of the last
three phases and their components used to construct the proposed models. These three
phases are closely linked, particularly for building machine learning models.

The workflow in Figure 17 highlights the core phases of the entire process, for construct-
ing the proposed models from a machine learning perspective. This includes the essential
data preprocessing phase before model training outlined in the previous Section 3.4, the
training and testing of the constructed models presented in this section, and the final phase
for performance evaluation outlined in the next section.

The first step in the modeling process is splitting the processed dataset into two
subsets, one of them for training the models using 80% of observations from the entire
processed dataset, and the remaining portion of 20% to be used later for testing the results
of the trained models. Subsequently, after the phase of model learning is completed, the
testing subset is passed into the trained models. Finally, using the predicted outcomes,
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the models” performance measures are calculated to evaluate the effectiveness of the
implemented models.

| Determining Target Feature Features Selection |
e ————

STEPS Cleaned Dataset |

| Features Scaling Handling Implance Issue |

| (Normalization) (Oversampling) |

Splitting the |Dataset

STEPS Processed Dataset

Dataset Preprocessing

S S D P S S N N S S S S S

| 80% — Machine Learning Algorithms |
| Training Data (RBS Models Learning) |
1 20% X Trained Prediction Models |
I Testing Data (RBS Models Testing) |

Evaluating Models Performance
(Accuracy, F1-Score, Precision, Recall, ROC AUC, Confusion
Matrix)

Figure 17. The workflow of the raised blood sugar detection models.

The raised blood sugar prediction models are implemented using a set of various

powerful machine learning algorithms including random forest (RF), decision tree (DT),
XGBoost, Adaboost, bagging decision trees, and multi-layer perceptron (MLP). The pa-
rameter settings for each algorithm employed in these models are configured using the
GridSearch approach to set up the parameters that yield the best performance results.

Decision tree is a supervised machine learning algorithm that can be utilized to build
classification and regression models. It is marked as one of the simplest straightfor-
ward machine learning algorithms, and is based on arranging the features in a tree
structure, and recursively splitting them based on chosen impurity criteria, such as
entropy measure, Gini index, or information gain value [55].

The AdaBoost algorithm which stands for adaptive boosting is a supervised machine
learning algorithm used for building classification models, based on combining mul-
tiple weak classifiers to obtain more improved performance, the AdaBoost classifier
commonly uses one level decision tree classifier. In AdaBoost, overfitting problems
can be less likely to occur with it compared to other learning algorithms; however, it is
not a suitable choice for datasets containing outliers and noisy data [56].

Random forest is one of the most robust supervised machine learning algorithms
commonly used for classification tasks. It is based on constructing a forest of multiple
decision trees for a subset of the variables that are selected randomly in each tree.
The prediction results of all the generated decision trees are aggregated to obtain
the final refined output. By using this ensemble technique, the random forest makes
an improved performance by mitigating the high variance issue that is known as a
common issue in the decision tree [57].

The XGBOOST algorithm, short for extreme gradient boosting, is a supervised machine
learning tree-based algorithm that is an improved version of its earlier gradient boost
algorithm. It can be applied for regression and classification problems, in particular
for large datasets due to its high efficiency in generating accurate results and fast
execution time. The working approach of the XGBOOST is based on passing the
outcome of a processed tree into the next tree sequentially [58].

Bagging decision trees, which stands for bootstrap aggregating, is a machine learning
algorithm that improves the accuracy and stability of decision trees by using the
ensemble approach. Bagging decision trees train multiple decision tree classifiers
independently, with training each tree on a random sample of the training data with
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replacement (bootstrap sampling). Based on a different subset of data, each decision
tree predicts the target variable, and their predictions are aggregated to determine
the final outcome. For regression tasks, this aggregation is achieved by averaging
the predictions, and for classification tasks by voting. Using the bagging technique
reduces overfitting and variance, which improves the model’s overall performance
and robustness [59].

The multi-layer perceptron classifier (MLP) is a feedforward ANN algorithm used
for classification problems. It consists of multiple layers of interconnected nodes
associated with weights and uses an iterative optimization algorithm of backpropa-
gation to minimize error and optimize classification results. The MLP classifier has
the well-known advantage of handling the nonlinearity issue of relationships in the
processed data [60].

3.6. Performance Evaluation Criteria

Various measures are employed to evaluate the models” performance in predicting

and detecting raised blood sugar cases. These metrics encompass accuracy, precision, recall,
F1-score, confusion matrix, and ROC AUC, which are mainly calculated from fundamental
measures, true positive (TP), false positive (FP), true negative (TN), and false negative (FN),
which are used commonly to evaluate classification models [61].

Confusion matrix: used commonly to summarize the prediction results of the machine
learning classification models, by comparing the actual values versus predicted values,
by which also the different performance metrics can be calculated. The confusion
matrix consists of the following four measures:

TP: the number of records from the positive class predicted correctly by the model.
FP: the number of records from the negative class predicted incorrectly as a positive
class by the model.

TN: the number of records from the negative class predicted correctly by the model.
FN: the number of records from the positive class predicted incorrectly as a negative
class by the model.

Accuracy: performance measure used to evaluate the efficiency of machine learning
classification models. It is computed as the ratio of correct prediction to the total
number of predictions.

Accuracy = P+ 1IN
Y= TP IN + FP + EN’

(2)

Precision is calculated as the fraction of correct prediction from the positive class to
the total number of predictions as a positive class, in this model it represents the
proportion of those who were predicted correctly as raised blood sugar cases, to the
total number of observations predicted as raised blood sugar cases.

TP
TP + FP’

Recall metric is the fraction of correctly predicted observations out of all actual obser-
vations of raised blood sugar cases.

Precision =

)

TP

Recall = m , (4)
F1-Score is calculated as the harmonic mean of precision and recall metrics.
Flscore — 2 (Precision * Recall)/ 5)

Precision+Recall
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e  The Receiver Operator Characteristic (ROC) is a visual representation that shows how
well a machine learning model can differentiate between several classes, by plotting
the true positive rate (TPR) and the false positive rate. ROC curve is a visual evaluation
method for the performance of classification models, which works by calculating the
area under the curve (AUC), the greater the AUC value the better the performance of
the classification model [62].

TP
TPR = —————
TP + FN’ (©)
FpP
FPR = i @

4. Results and Discussion

This section discusses the experimental results of the raised blood sugar prediction
models. The performance of the raised blood sugar detection and prediction models
was evaluated using the metrics presented in Section 3.4. Table 2 presents the results of
the performance evaluation using various measures including accuracy, recall, precision,
and F1 Score. The random forest algorithm has the highest scores in accuracy, precision,
and F1-Score among all examined models. The scores were 98.4%, 98.4%, and 97.1% for
accuracy, F1-Score, and precision, respectively.

Table 2. The results of performance metrics for the raised blood sugar prediction models.

Algorithm RF Bagging DT MLP XGBoost AdaBoost DT
Accuracy 98.4% 97.4% 96.3% 96.4% 95.2% 94.8%
F1-Score 98.4% 97.5% 96.5% 96.5% 95.4% 95.2%
Precision 97.1% 95.3% 93.2% 93.5% 91.5% 90.9%
Recall 99.8% 99.5% 99.9% 99.8% 99.8% 99.8%

Figure 18a presents the testing results for the raised blood sugar detection and predic-
tion models using the ROC AUC, represented by the ratio of negative observations (not
raised blood sugar levels cases) that were predicted incorrectly as raised blood sugar levels
out of the total number of observations from the negative class (specificity), versus the ratio
of positive observations (raised blood sugar levels cases) that were predicted correctly as
raised blood sugar levels cases out of the total number of observation from the positive
class (sensitivity). Also, Figure 18b presents a comparison of the accuracy for all the utilized
raised blood sugar detection and prediction models.

From the presented results it can be concluded that the random forest algorithm
had the highest performance, achieving an AUC value of 0.98, and an accuracy of 98.4%,
followed by the bagging decision trees model with an AUC value of 0.96, while the decision
tree-based model had the lowest performance with an AUC of 0.95 and accuracy of 94.8%.

The highest performance result for the raised blood sugar prediction model which was
implemented using the random forest classifier might be attributed to the ensemble working
approach in random forest, minimizing the high variance issues that are present in the
decision tree, as well as to its low sensitivity to overfitting problems. On the other hand, the
model that was utilized using the multi-layer perceptron algorithm which is based on neural
networks did not yield the best performance results, although neural network algorithms
are well known for their high predictive power and robustness; however, this can vary
depending on the characteristics and complexity of the used dataset, in addition to the fact
that using MLP ANN requires very careful configuration of the algorithm parameters. For
models using the Adaboost and XGBoost algorithms it is noticed that their performance
is higher than the decision tree-based model, this result aligns with the basics of these
algorithms, of using the decision tree as a weak learning and improving its performance by
aggregating multiple weak predictions to reduce bias and high variance issues.
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Figure 18. Raised blood sugar prediction models performances comparison using ROC AUC in (a),
and accuracy in (b).

The confusion matrix in Figure 19 summarizes the performance of the raised blood
sugar prediction model, which is implemented using the random forest classifier, which
achieved the highest performance among the tested models, showing the correct and
incorrect predictions from the positive and negative classes related to raised blood sugar
subject, and not raised blood sugar subject, respectively.

Based on the previous results, it can be concluded that the proposed model for pre-
dicting raised blood sugar in this study outperforms the results achieved in other models
implemented in previous studies that were applied to similar datasets of risk factors related
to diabetes. In addition, the accuracy and other performance metrics are significantly higher
in this model, despite it being applied to a larger dataset including all possible variables
that are found to contribute to the development of diabetes and other NCDs.

Analysis of the features” importance in the proposed model for raised blood sugar
prediction shows that age, gender, obesity, waist-hip ratio, total cholesterol, HDL, hy-
pertension, history of cardiovascular diseases, physical activity, sugar intake, salt intake,
anxiety and depression, and sleep disturbances variables contribute substantially towards
the predictive power of the model.
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Figure 19. Comparison of the training and testing performance of random forest model using
confusion matrix.

5. Conclusions

This study proposes machine learning-based models to detect and predict raised blood
sugar levels, using a curated selection of robust supervised machine learning classification
algorithms. These algorithms leverage various risk factors present in the dataset. The
models are built using sex primary classification algorithms: random forest, decision tree,
Adaboost, XGBoost, and bagging decision trees, in addition to using multi-layer perceptron
from neural networks. Among these, the random forest classifier achieved the highest
accuracy rate of 98.4%. There were also promising results for bagging decision trees,
XGBoost, MLP, AdaBoost, and decision tree, achieving accuracy rates of 97.4%, 96.4%,
96.3%, 95.2%, and 94.8%, respectively. The significance of using these models lies in their
potential to support the healthcare sector and alleviate the workload of healthcare workers.
This will contribute to improved public health and well-being. For future endeavors, it
is recommended to incorporate more than one reading for the fasting blood sugar for
the use of diagnosis purposes. Further, the model can also be enhanced to determine
whether fasting blood sugar is normal, impaired, or high. Another potential opportunity
for improving the study results could be achieved by collecting datasets from the STEPS
NCDs studies that were conducted in different communities and countries for performing
model generalization by training it on datasets collected from various ethnicities.

Finally, deploying the raised blood sugar prediction model into health management
information systems and electronic health records presents several challenges. These in-
clude privacy limitations in acquiring consent for using patients” data to build predictive
models and the acceptance of incorporating machine learning and artificial intelligence
techniques within the healthcare sector among the public, patients, and healthcare profes-
sionals. Additionally, the availability of electronic health records, especially in developing
countries, poses a significant limitation, as many healthcare facilities still rely on paper-
based and manual approaches for reporting and documenting health data. In addition,
researchers should avoid complicated and numerous predictors and focus on simple and
accurate predictors.
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